Computer-integrated manufacturing

Last updated
Manufacturing Systems Integration Program, NIST 2008 NIST Manufacturing Systems Integration Program.jpg
Manufacturing Systems Integration Program, NIST 2008

Computer-integrated manufacturing (CIM) is the manufacturing approach of using computers to control the entire production process. [1] [2] This integration allows individual processes to exchange information with each part. Manufacturing can be faster and less error-prone by the integration of computers. Typically CIM relies on closed-loop control processes based on real-time input from sensors. It is also known as flexible design and manufacturing. [3]

Contents

Overview

  1. Computer-integrated manufacturing is used in automotive, aviation, space, and ship building industries. [4]
  2. The term "computer-integrated manufacturing" is both a method of manufacturing and the name of a computer-automated system in which individual engineering, production, marketing, and support functions of a manufacturing enterprise are organized.
  3. In a CIM system functional areas such as design, analysis, planning, purchasing, cost accounting, inventory control, and distribution are linked through the computer with factory floor functions such as materials handling and management, providing direct control and monitoring of all the operation.

CIM is an example of the implementation of information and communication technologies (ICTs) in manufacturing.

CIM implies that there are at least two computers exchanging information, e.g. the controller of an arm robot and a micro-controller.

CIM is most useful where a high level of ICT is used in the company or facility, such as CAD/CAM systems, and the availability of process planning and its data.

History

The idea of "digital manufacturing" became prominent in the early 1970s, with the release of Dr. Joseph Harrington's book, Computer Integrated Manufacturing. [5] However, it was not until 1984 when computer-integrated manufacturing began to be developed and promoted by machine tool manufacturers and the Computer and Automated Systems Association and Society of Manufacturing Engineers (CASA/SME).

"CIM is the integration of total manufacturing enterprise by using integrated systems and data communication coupled with new managerial philosophies that improve organizational and personnel efficiency ." ERHUM
In a literature research was shown that 37 different concepts of CIM were published, most of them from Germany and USA. In a timeline of the 37 publications it is possible to see how the CIM concept developed over time. Also it is quite markable how different the concepts of all publications are. [6]

Topics

CIM & production control system: Computer Integrated Manufacturing is used to describe the complete automation of a manufacturing plant, with all processes running under computer control and digital information tying them together. Computer Integrated Manufacturing control system.jpg
CIM & production control system: Computer Integrated Manufacturing is used to describe the complete automation of a manufacturing plant, with all processes running under computer control and digital information tying them together.

Key challenges

There are three major challenges to development of a smoothly operating computer-integrated manufacturing system:

Subsystems

A computer-integrated manufacturing system is not the same as a "lights-out factory" , which would run completely independent of human intervention, although it is a big step in that direction. Part of the system involves flexible manufacturing, where the factory can be quickly modified to produce different products, or where the volume of products can be changed quickly with the aid of computers. Some or all of the following subsystems may be found in a CIM operation:

Computer-aided techniques:

Devices and equipment required:

Technologies:

Others:

CIMOSA

CIMOSA (Computer Integrated Manufacturing Open System Architecture), is a 1990s European proposal for an open systems architecture for CIM developed by the AMICE Consortium as a series of ESPRIT projects. [8] [9] The goal of CIMOSA was "to help companies to manage change and integrate their facilities and operations to face world wide competition. It provides a consistent architectural framework for both enterprise modeling and enterprise integration as required in CIM environments". [10]

CIMOSA provides a solution for business integration with four types of products: [11]

CIMOSA according to Vernadat (1996), coined the term business process and introduced the process-based approach for integrated enterprise modeling based on a cross-boundaries approach, which opposed to traditional function or activity-based approaches. With CIMOSA also the concept of an "Open System Architecture" (OSA) for CIM was introduced, which was designed to be vendor-independent, and constructed with standardised CIM modules. Here to the OSA is "described in terms of their function, information, resource, and organizational aspects. This should be designed with structured engineering methods and made operational in a modular and evolutionary architecture for operational use". [10]

Areas

There are multiple areas of usage:

See also

Related Research Articles

<span class="mw-page-title-main">Computer-aided design</span> Constructing a product by means of computer

Computer-aided design (CAD) is the use of computers to aid in the creation, modification, analysis, or optimization of a design. This software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. Designs made through CAD software are helpful in protecting products and inventions when used in patent applications. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The terms computer-aided drafting (CAD) and computer aided design and drafting (CADD) are also used.

<span class="mw-page-title-main">Computer-aided manufacturing</span> Use of software to control industrial processes

Computer-aided manufacturing (CAM) also known as computer-aided modeling or computer-aided machining is the use of software to control machine tools in the manufacturing of work pieces. This is not the only definition for CAM, but it is the most common. It may also refer to the use of a computer to assist in all operations of a manufacturing plant, including planning, management, transportation and storage. Its primary purpose is to create a faster production process and components and tooling with more precise dimensions and material consistency, which in some cases, uses only the required amount of raw material, while simultaneously reducing energy consumption. CAM is now a system used in schools and lower educational purposes. CAM is a subsequent computer-aided process after computer-aided design (CAD) and sometimes computer-aided engineering (CAE), as the model generated in CAD and verified in CAE can be input into CAM software, which then controls the machine tool. CAM is used in many schools alongside computer-aided design (CAD) to create objects.

<span class="mw-page-title-main">Mechatronics</span> Combination of electronics and mechanics

Mechatronics engineering also called mechatronics, is an interdisciplinary branch of engineering that focuses on the integration of mechanical, electrical and electronic engineering systems, and also includes a combination of robotics, electronics, computer science, telecommunications, systems, control, and product engineering.

<span class="mw-page-title-main">Computer-aided engineering</span> Use of software for engineering design and analysis

Computer-aided engineering (CAE) is the broad usage of computer software to aid in engineering analysis tasks. It includes finite element analysis (FEA), computational fluid dynamics (CFD), multibody dynamics (MBD), durability and optimization. It is included with computer-aided design (CAD) and computer-aided manufacturing (CAM) in the collective abbreviation "CAx".

<span class="mw-page-title-main">CIMOSA</span>

CIMOSA, standing for "Computer Integrated Manufacturing Open System Architecture", is an enterprise modeling framework, which aims to support the enterprise integration of machines, computers and people. The framework is based on the system life cycle concept, and offers a modelling language, methodology and supporting technology to support these goals.

<span class="mw-page-title-main">Integrated Computer-Aided Manufacturing</span>

Integrated Computer-Aided Manufacturing (ICAM) is a US Air Force program that develops tools, techniques, and processes to support manufacturing integration. It influenced the computer-integrated manufacturing (CIM) and computer-aided manufacturing (CAM) project efforts of many companies. The ICAM program was founded in 1976 and initiative managed by the US Air Force at Wright-Patterson as a part of their technology modernization efforts. The program initiated the development a series of standards for modeling and analysis in management and business improvement, called Integrated Definitions, short IDEFs.

A functional software architecture (FSA) is an architectural model that identifies enterprise functions, interactions and corresponding IT needs. These functions can be used as a reference by different domain experts to develop IT-systems as part of a co-operative information-driven enterprise. In this way, both software engineers and enterprise architects can create an information-driven, integrated organizational environment.

<span class="mw-page-title-main">Enterprise integration</span>

Enterprise integration is a technical field of enterprise architecture, which is focused on the study of topics such as system interconnection, electronic data interchange, product data exchange and distributed computing environments.

<span class="mw-page-title-main">Manufacturing engineering</span> Branch of engineering

Manufacturing engineering or production engineering is a branch of professional engineering that shares many common concepts and ideas with other fields of engineering such as mechanical, chemical, electrical, and industrial engineering. Manufacturing engineering requires the ability to plan the practices of manufacturing; to research and to develop tools, processes, machines and equipment; and to integrate the facilities and systems for producing quality products with the optimum expenditure of capital.

<span class="mw-page-title-main">Dennis E. Wisnosky</span>

Dennis E. Wisnosky is an American consultant, writer and former chief architect and chief technical officer of the US DoD Business Mission Area (BMA) within the Office of Business Transformation. He is known as one of the creators and initiators of the Integrated Definition (IDEFs) language, a standard for modeling and analysis in management and business improvement efforts.

<span class="mw-page-title-main">STEP-NC</span> Machine tool control language

STEP-NC is a machine tool control language that extends the ISO 10303 STEP standards with the machining model in ISO 14649, adding geometric dimension and tolerance data for inspection, and the STEP PDM model for integration into the wider enterprise. The combined result has been standardized as ISO 10303-238.

Enterprise engineering is the body of knowledge, principles, and practices used to design all or part of an enterprise. An enterprise is a complex socio-technical system that comprises people, information, and technology that interact with each other and their environment in support of a common mission. One definition is: "an enterprise life-cycle oriented discipline for the identification, design, and implementation of enterprises and their continuous evolution", supported by enterprise modelling. The discipline examines each aspect of the enterprise, including business processes, information flows, material flows, and organizational structure. Enterprise engineering may focus on the design of the enterprise as a whole, or on the design and integration of certain business components.

<span class="mw-page-title-main">Generalised Enterprise Reference Architecture and Methodology</span>

Generalised Enterprise Reference Architecture and Methodology (GERAM) is a generalised enterprise architecture framework for enterprise integration and business process engineering. It identifies the set of components recommended for use in enterprise engineering.

François B. Vernadat is a French and Canadian computer scientist, who has contributed to Enterprise Modelling, Integration and Networking over the last 25 years specialising in enterprise architectures, business process modelling, information systems design and analysis, systems integration and interoperability and systems analysis using Petri nets.

LinuxCNC is a free, open-source Linux software system that implements numerical control capability using general purpose computers to control CNC machines. Designed by various volunteer developers at linuxcnc.org, it is typically bundled as an ISO file with a modified version of 32-bit Ubuntu Linux which provides the required real-time kernel.

Kurt Kosanke is a German engineer, retired IBM manager, director of the AMICE Consortium and consultant, known for his work in the field of enterprise engineering, Enterprise integration and CIMOSA.

<span class="mw-page-title-main">Purdue Enterprise Reference Architecture</span>

Purdue Enterprise Reference Architecture (PERA) is a 1990s reference model for enterprise architecture, developed by Theodore J. Williams and members of the Industry-Purdue University Consortium for Computer Integrated Manufacturing.

Jean-Baptiste Waldner is a French engineer, management consultant and author, known for his contributions in the fields of computer-integrated manufacturing, enterprise architecture, nanoelectronics, nanocomputers and swarm intelligence.

Industrial and production engineering (IPE) is an interdisciplinary engineering discipline that includes manufacturing technology, engineering sciences, management science, and optimization of complex processes, systems, or organizations. It is concerned with the understanding and application of engineering procedures in manufacturing processes and production methods. Industrial engineering dates back all the way to the industrial revolution, initiated in 1700s by Sir Adam Smith, Henry Ford, Eli Whitney, Frank Gilbreth and Lilian Gilbreth, Henry Gantt, F.W. Taylor, etc. After the 1970s, industrial and production engineering developed worldwide and started to widely use automation and robotics. Industrial and production engineering includes three areas: Mechanical engineering, industrial engineering, and management science.

References

  1. Kalpakjian, Serope; Schmid, Steven (2006), Manufacturing engineering and technology (5th ed.), Prentice Hall, p. 1192, ISBN   978-7-302-12535-8.
  2. Laplante, Phillip A. (2005), Comprehensive dictionary of electrical engineering (2nd ed.), CRC Press, p. 136, ISBN   978-0-8493-3086-5.
  3. "Flexible Manufacturing Systems". 21 March 2017.
  4. Saracoglu, B. O. (2011). "Identification of Technology Performance Criteria for CAD/CAM/CAE/CIM/CAL in Shipbuilding Industry". 2006 Technology Management for the Global Future - PICMET 2006 Conference. pp. 1635–1646. doi:10.1109/PICMET.2006.296739. ISBN   978-1-890843-14-4. S2CID   23963474.
  5. http://www.simflow.net/publications/books/cimie-part1.pdf [ bare URL PDF ]
  6. Meudt, Tobias; Pohl, Malte; Metternich, Joachim (27 July 2017). "Modelle und Strategien zur Einführung des Computer Integrated Manufac-turing (CIM) – Ein Literaturüberblick". TU Prints: 36.
  7. Waldner, Jean-Baptiste (September 1992). Principles of Computer-Integrated Manufacturing. London: John Wiley & Sons. pp. 128–p132. ISBN   0-471-93450-X.
  8. AMICE Consortium (1991). Open System Architecture for CIM, Research Report of ESPRIT Project 688, Vol. 1, Springer-Verlag, 1989.
  9. AMICE Consortium (1991), Open System Architecture, CIMOSA, AD 1.0, Architecture Description, ESPRIT Consortium AMICE, Brussels, Belgium.
  10. 1 2 F. Vernadat (1996). Enterprise Modeling and Integration. p.40
  11. Richard C. Dorf, Andrew Kusiak (1994). Handbook of Design, Manufacturing, and Automation. p.1014

Further reading