Enterprise integration

Last updated
Concept of enterprise integration Concept of Enterprise Integration.png
Concept of enterprise integration

Enterprise integration is a technical field of enterprise architecture, which is focused on the study of topics such as system interconnection, electronic data interchange, product data exchange and distributed computing environments. [1]

Contents

It is a concept in enterprise engineering to provide the relevant information and thereby enable communication between people, machines and computers and their efficient co-operation and co-ordination. [2]

Overview

Requirements and principles deal with determining the business drivers and guiding principles that help in the development of the enterprise architecture. Each functional and non-functional requirement should be traceable to one or more business drivers. Organizations are beginning to become more aware of the need for capturing and managing requirements. Use-case modeling is one of the techniques that is used for doing this. Enterprise Integration, according to Brosey et al. (2001), "aims to connect and combines people, processes, systems, and technologies to ensure that the right people and the right processes have the right information and the right resources at the right time". [3]

Enterprise Integration is focused on optimizing operations in a world which could be considered full of continuous and largely unpredictable change. Changes occur in single manufacturing companies just as well as in an "everchanging set of extended or virtual enterprises". It enables the actors to make "quick and accurate decisions and adaptation of operations to respond to emerging threats and opportunities". [3]

History

Evolution in Enterprise Integration: This figure summarizes these developments indicating the shift of emphasis from systems integration to enterprise integration with increasing focus on inter enterprise operations or networks. Evolution in Enterprise Integration.gif
Evolution in Enterprise Integration: This figure summarizes these developments indicating the shift of emphasis from systems integration to enterprise integration with increasing focus on inter enterprise operations or networks.

In the 1990s enterprise integration and enterprise engineering became a focal point of discussions with active contribution of many disciplines. The state of the art in enterprise engineering and integration by the end of the 1990s has been rather confusing, according to Jim Nell and Kurt Kosanke (1997):

Workflow modelling, business process modelling, business process reengineering (BPR), and concurrent engineering all aim toward identifying and providing the information needed in the enterprise operation. In addition, numerous integrating-platforms concepts are promoted with only marginal or no recognition or support of information identification. Tools claiming to support enterprise modelling exist in very large numbers, but the support is rather marginal, especially if models are to be used by the end user, for instance, in decision support.

Enterprise integration topics

Enterprise modeling

In his 1996 book "Enterprise Modeling and Integration: Principles and Applications" François Vernadat states, that "enterprise modeling is concerned with assessing various aspects of an enterprise in order to better understand, restructure or design enterprise operations. It is the basis of business process reengineering and the first step to achieving enterprise integration. Enterprise integration according to Vernadat is a rapidly developing technical field which has already shown proven solutions for system interconnection, electronic data interchange, product data exchange and distributed computing environments. His book combines these two methodologies and advocates a systematic engineering approach called Enterprise Engineering, for modeling, analysing, designing and implementing integrated enterprise systems". [5]

Enterprise integration needs

With this understanding the different needs in enterprise integration can be identified: [4]

Identification and use of information

Generalised Enterprise Reference Architecture and Methodology (GERAM) Framework for Enterprise Integration. GERAM Framework.jpg
Generalised Enterprise Reference Architecture and Methodology (GERAM) Framework for Enterprise Integration.
Example of Enterprise integration: the US National Business Center's Human Resources Line of Business, Innovative Future Direction. NBC Enterprise Integration.gif
Example of Enterprise integration: the US National Business Center's Human Resources Line of Business, Innovative Future Direction.

Explicit knowledge on information needs during the operation of the enterprise can be provided by a model of the operational processes. A model which identifies the operational tasks, their required information supply and removal needs as well as the point in time of required information transactions. In order to enable consistent modelling of the enterprise operation the modelling process has to be guided and supported by a reference architecture, a methodology and IT based tools. [6]

The Generalised Enterprise Reference Architecture and Methodology (GERAM) framework defined by the IFAC/IFIP Task Force provides the necessary guidance of the modelling process, see figure, and enables semantic unification of the model contents as well. The framework identifies the set of components necessary and helpful for enterprise modelling. The general concepts identified and defined in the reference architecture consist of life cycle, life history, model views among others. These concept help the user to create and maintain the process models of the operation and use them in her/his daily work. The modelling tools will support both model engineering and model use by providing an appropriate methodology and language for guiding the user and model representation, respectively. [6]

Transfer of information

To enable an integrated real time support of the operation, both the process descriptions and the actual information have to be available in real time for decision support, operation monitoring and control, and model maintenance. [6]

The figure illustrates the concept of an integrating infrastructure linking the enterprise model to the real world systems. Integrating services act as a harmonising platform across the heterogeneous system environments (IT and others) and provide the necessary execution support for the model. The process dynamics captured in the enterprise model act as the control flow for model enactment. Therefore, access to information and its transfer to and from the location of use is controlled by the model and supported by the integrating infrastructure. The harmonising characteristics of the integrating infrastructure enables transfer of information across and beyond the organisation. Through the semantic unification of the modelling framework interoperability of enterprise models is assured as well. [6]

Enterprise Integration Act of 2002

The Public Law 107-277 (116 Stat. 1936-1938), known as the Enterprise Integration Act of 2002, authorizes the National Institute of Standards and Technology to work with major manufacturing industries on an initiative of standards development and implementation for electronic enterprise integration, etc. It requires the Director of the National Institute of Standards and Technology (NIST) to establish an initiative for advancing enterprise integration within the United States which shall: [7]

See also

Related Research Articles

<span class="mw-page-title-main">CIMOSA</span> Enterprise modeling framework

CIMOSA, standing for "Computer Integrated Manufacturing Open System Architecture", is an enterprise modeling framework, which aims to support the enterprise integration of machines, computers and people. The framework is based on the system life cycle concept, and offers a modelling language, methodology and supporting technology to support these goals.

Enterprise architecture (EA) is a business function concerned with the structures and behaviours of a business, especially business roles and processes that create and use business data. The international definition according to the Federation of Enterprise Architecture Professional Organizations is "a well-defined practice for conducting enterprise analysis, design, planning, and implementation, using a comprehensive approach at all times, for the successful development and execution of strategy. Enterprise architecture applies architecture principles and practices to guide organizations through the business, information, process, and technology changes necessary to execute their strategies. These practices utilize the various aspects of an enterprise to identify, motivate, and achieve these changes."

A functional software architecture (FSA) is an architectural model that identifies enterprise functions, interactions and corresponding IT needs. These functions can be used as a reference by different domain experts to develop IT-systems as part of a co-operative information-driven enterprise. In this way, both software engineers and enterprise architects can create an information-driven, integrated organizational environment.

<span class="mw-page-title-main">Computer-integrated manufacturing</span> Manufacturing controlled by computers

Computer-integrated manufacturing (CIM) is the manufacturing approach of using computers to control the entire production process. This integration allows individual processes to exchange information with each part. Manufacturing can be faster and less error-prone by the integration of computers. Typically CIM relies on closed-loop control processes based on real-time input from sensors. It is also known as flexible design and manufacturing.

<span class="mw-page-title-main">IDEF0</span>

IDEF0, a compound acronym, is a function modeling methodology for describing manufacturing functions, which offers a functional modeling language for the analysis, development, reengineering and integration of information systems, business processes or software engineering analysis.

<span class="mw-page-title-main">Extended Enterprise Modeling Language</span>

Extended Enterprise Modeling Language (EEML) in software engineering is a modelling language used for Enterprise modelling across a number of layers.

<span class="mw-page-title-main">Enterprise modelling</span>

Enterprise modelling is the abstract representation, description and definition of the structure, processes, information and resources of an identifiable business, government body, or other large organization.

Enterprise engineering is the body of knowledge, principles, and practices used to design all or part of an enterprise. An enterprise is a complex socio-technical system that comprises people, information, and technology that interact with each other and their environment in support of a common mission. One definition is: "an enterprise life-cycle oriented discipline for the identification, design, and implementation of enterprises and their continuous evolution", supported by enterprise modelling. The discipline examines each aspect of the enterprise, including business processes, information flows, material flows, and organizational structure. Enterprise engineering may focus on the design of the enterprise as a whole, or on the design and integration of certain business components.

<span class="mw-page-title-main">Enterprise life cycle</span> Process of changing an enterprise over time

Enterprise life cycle (ELC) in enterprise architecture is the dynamic, iterative process of changing the enterprise over time by incorporating new business processes, new technology, and new capabilities, as well as maintenance, disposition and disposal of existing elements of the enterprise.

<span class="mw-page-title-main">View model</span>

A view model or viewpoints framework in systems engineering, software engineering, and enterprise engineering is a framework which defines a coherent set of views to be used in the construction of a system architecture, software architecture, or enterprise architecture. A view is a representation of the whole system from the perspective of a related set of concerns.

<span class="mw-page-title-main">NIST Enterprise Architecture Model</span> Reference model of enterprise architecture

NIST Enterprise Architecture Model is a late-1980s reference model for enterprise architecture. It defines an enterprise architecture by the interrelationship between an enterprise's business, information, and technology environments.

<span class="mw-page-title-main">Generalised Enterprise Reference Architecture and Methodology</span>

Generalised Enterprise Reference Architecture and Methodology (GERAM) is a generalised enterprise architecture framework for enterprise integration and business process engineering. It identifies the set of components recommended for use in enterprise engineering.

François B. Vernadat is a French and Canadian computer scientist, who has contributed to Enterprise Modelling, Enterprise Integration and Networking over the last 40 years specialising in Enterprise Architectures, business process modelling, information systems design and analysis, systems integration and interoperability and systems analysis using Petri nets.

Peter Bernus is a Hungarian Australian scientist and Associate Professor of Enterprise Architecture at the School of Information and Communication Technology, Griffith University, Brisbane, Australia.

<span class="mw-page-title-main">James G. Nell</span> American engineer (born 1938)

James G. "Jim" Nell is an American engineer. He was the principal investigator of the Manufacturing Enterprise Integration Project at the National Institute of Standards and Technology (NIST), and is known for his work on enterprise integration.

Business process management (BPM) is the discipline in which people use various methods to discover, model, analyze, measure, improve, optimize, and automate business processes. Any combination of methods used to manage a company's business processes is BPM. Processes can be structured and repeatable or unstructured and variable. Though not required, enabling technologies are often used with BPM.

Live, Virtual, & Constructive (LVC) Simulation is a broadly used taxonomy for classifying Modeling and Simulation (M&S). However, categorizing a simulation as a live, virtual, or constructive environment is problematic since there is no clear division among these categories. The degree of human participation in a simulation is infinitely variable, as is the degree of equipment realism. The categorization of simulations also lacks a category for simulated people working real equipment.

<span class="mw-page-title-main">ISO 19439</span> International standard for enterprise modelling and enterprise integration

ISO 19439:2006 Enterprise integration—Framework for enterprise modelling, is an international standard for enterprise modelling and enterprise integration developed by the International Organization for Standardization, based on CIMOSA and GERAM.

Enterprise interoperability is the ability of an enterprise—a company or other large organization—to functionally link activities, such as product design, supply chains, manufacturing, in an efficient and competitive way.

The history of business architecture has its origins in the 1980s. In the next decades business architecture has developed into a discipline of "cross-organizational design of the business as a whole" closely related to enterprise architecture. The concept of business architecture has been proposed as a blueprint of the enterprise, as a business strategy, and also as the representation of a business design.

References

PD-icon.svg This article incorporates public domain material from the National Institute of Standards and Technology

  1. François Vernadat (1996). Enterprise Modeling and Integration: Principles and Applications, Chapman & Hall, London.
  2. CIMOSA Association e.V., About us. Accessed 16 Jan 2009.
  3. 1 2 W. D. Brosey et al. (2001). Grand Challenges of Enterprise Integration Archived 2009-04-03 at the Wayback Machine
  4. 1 2 J.G. Nell and Kurt Kosanke (1997). ICEIMT'97 International Conference on Enterprise Integration Modeling Technology. Accessed 07 Jan 2008.
  5. Announcing the first textbook on Enterprise Modelling and Integration Archived 2008-12-24 at the Wayback Machine Francois B. Vernadat (last update: 21.10.1996). Accessed 07 Jan 2008.
  6. 1 2 3 4 NIST (1997) Issues in Enterprise Integration
  7. Enterprise Integration Act of 2002 Archived 2011-05-22 at the Wayback Machine .Accessed 07 Jan 2008.

Further reading