This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Enterprise application integration (EAI) is the use of software and computer systems' architectural principles to integrate a set of enterprise computer applications. [1]
Enterprise application integration is an integration framework composed of a collection of technologies and services which form a middleware or "middleware framework" to enable integration of systems and applications across an enterprise. [1]
Many types of business software such as supply chain management applications, ERP systems, CRM applications for managing customers, business intelligence applications, payroll, and human resources systems typically cannot communicate with one another in order to share data or business rules. For this reason, such applications are sometimes referred to as islands of automation or information silos. This lack of communication leads to inefficiencies, wherein identical data are stored in multiple locations, or straightforward processes are unable to be automated.[ citation needed ]
Enterprise application integration is the process of linking such applications within a single organization together in order to simplify and automate business processes to the greatest extent possible, while at the same time avoiding having to make sweeping changes to the existing applications or data structures. Applications can be linked either at the back-end via APIs or (seldom) the front-end (GUI).[ citation needed ]
In the words of research firm Gartner: "[EAI is] the unrestricted sharing of data and business processes among any connected application or data sources in the enterprise." [2]
The various systems that need to be linked together may reside on different operating systems, use different database solutions or computer languages, or different date and time formats, or could be legacy systems that are no longer supported by the vendor who originally created them. In some cases, such systems are dubbed "stovepipe systems" because they consist of components that have been jammed together in a way that makes it very hard to modify them in any way.[ citation needed ]
If integration is applied without following a structured EAI approach, point-to-point connections grow across an organization. Dependencies are added on an impromptu basis, resulting in a complex structure that is difficult to maintain. This is commonly referred to as spaghetti, an allusion to the programming equivalent of spaghetti code.
For example, the number of connections needed to have fully meshed point-to-point connections, with n points, is given by (see binomial coefficient). Thus, for ten applications to be fully integrated point-to-point, point-to-point connections are needed, following a quadratic growth pattern.
However, the number of connections within organizations does not necessarily grow according to the square of the number of points. In general, the number of connections to any point is only limited by the number of other points in an organization, but can be significantly smaller in principle. EAI can also increase coupling between systems and therefore increase management overhead and costs.[ citation needed ]
EAI is not just about sharing data between applications but also focuses on sharing both business data and business processes. A middleware analyst attending to EAI will often look at the system of systems.[ citation needed ]
EAI can be used for different purposes:[ citation needed ]
This section describes common design patterns for implementing EAI, including integration, access and lifetime patterns. These are abstract patterns and can be implemented in many different ways. There are many other patterns commonly used in the industry, ranging from high-level abstract design patterns to highly specific implementation patterns. [3]
EAI systems implement two patterns: [4]
Both patterns are often used concurrently. The same EAI system could be keeping multiple applications in sync (mediation), while servicing requests from external users against these applications (federation).[ citation needed ]
EAI supports both asynchronous (fire and forget) and synchronous access patterns, the former being typical in the mediation case and the latter in the federation case.[ citation needed ]
An integration operation could be short-lived (e.g., keeping data in sync across two applications could be completed within a second) or long-lived (e.g., one of the steps could involve the EAI system interacting with a human work flow application for approval of a loan that takes hours or days to complete).[ citation needed ]
There are two major topologies: hub-and-spoke, and bus. Each has its own advantages and disadvantages. In the hub-and-spoke model, the EAI system is at the center (the hub), and interacts with the applications via the spokes. In the bus model, the EAI system is the bus (or is implemented as a resident module in an already existing message bus or message-oriented middleware).[ citation needed ]
Most large enterprises use zoned networks to create a layered defense against network oriented threats. For example, an enterprise typically has a credit card processing (PCI-compliant) zone, a non-PCI zone, a data zone, a DMZ zone to proxy external user access, and an IWZ zone to proxy internal user access. Applications need to integrate across multiple zones. The Hub and spoke model would work better in this case.[ citation needed ]
Multiple technologies are used in implementing each of the components of the EAI system:[ citation needed ]
Currently, there are many variations of thought on what constitutes the best infrastructure, component model, and standards structure for Enterprise Application Integration. There seems to be a consensus that four components are essential for a modern enterprise application integration architecture:[ citation needed ]
Although other approaches like connecting at the database or user-interface level have been explored, they have not been found to scale or be able to adjust. Individual applications can publish messages to the centralized broker and subscribe to receive certain messages from that broker. Each application only requires one connection to the broker. This central control approach can be extremely scalable and highly evolvable.[ citation needed ]
Enterprise Application Integration is related to middleware technologies such as message-oriented middleware (MOM), and data representation technologies such as XML or JSON. Other EAI technologies involve using web services as part of service-oriented architecture as a means of integration. Enterprise Application Integration tends to be data centric. In the near future, it will come to include content integration and business processes.[ citation needed ]
In 2003 it was reported that 70% of all EAI projects fail. Most of these failures are not due to the software itself or technical difficulties, but due to management issues. Integration Consortium European Chairman Steve Craggs has outlined the seven main pitfalls undertaken by companies using EAI systems and explains solutions to these problems. [5]
Other potential problems may arise in these areas:[ citation needed ]
Middleware in the context of distributed applications is software that provides services beyond those provided by the operating system to enable the various components of a distributed system to communicate and manage data. Middleware supports and simplifies complex distributed applications. It includes web servers, application servers, messaging and similar tools that support application development and delivery. Middleware is especially integral to modern information technology based on XML, SOAP, Web services, and service-oriented architecture.
In distributed computing, an object request broker (ORB) is a concept of a middleware, which allows program calls to be made from one computer to another via a computer network, providing location transparency through remote procedure calls. ORBs promote interoperability of distributed object systems, enabling such systems to be built by piecing together objects from different vendors, while different parts communicate with each other via the ORB. Common Object Request Broker Architecture) standardizes the way ORB may be implemented.
In computer science, message queues and mailboxes are software-engineering components typically used for inter-process communication (IPC), or for inter-thread communication within the same process. They use a queue for messaging – the passing of control or of content. Group communication systems provide similar kinds of functionality.
Message-oriented middleware (MOM) is software or hardware infrastructure supporting sending and receiving messages between distributed systems. MOM allows application modules to be distributed over heterogeneous platforms and reduces the complexity of developing applications that span multiple operating systems and network protocols. The middleware creates a distributed communications layer that insulates the application developer from the details of the various operating systems and network interfaces. Application programming interfaces (APIs) that extend across diverse platforms and networks are typically provided by MOM.
An enterprise service bus (ESB) implements a communication system between mutually interacting software applications in a service-oriented architecture (SOA). It represents a software architecture for distributed computing, and is a special variant of the more general client-server model, wherein any application may behave as server or client. ESB promotes agility and flexibility with regard to high-level protocol communication between applications. Its primary use is in enterprise application integration (EAI) of heterogeneous and complex service landscapes.
Tuxedo is a middleware platform used to manage distributed transaction processing in distributed computing environments. Tuxedo is a transaction processing system or transaction-oriented middleware, or enterprise application server for a variety of systems and programming languages. Developed by AT&T in the 1980s, it became a software product of Oracle Corporation in 2008 when they acquired BEA Systems. Tuxedo is now part of the Oracle Fusion Middleware.
Microsoft BizTalk Server is an inter-organizational middleware system (IOMS) that automates business processes through the use of adapters which are tailored to communicate with different software systems used in an enterprise. Created by Microsoft, it provides enterprise application integration, business process automation, business-to-business communication, message broker and business activity monitoring.
An XML appliance is a special-purpose network device used to secure, manage and mediate XML traffic. They are most popularly implemented in service-oriented architectures (SOA) to control XML-based web services traffic, and increasingly in cloud-oriented computing to help enterprises integrate on premises applications with off-premises cloud-hosted applications. XML appliances are also commonly referred to as SOA appliances, SOA gateways, XML gateways, and cloud brokers. Some have also been deployed for more specific applications like Message-oriented middleware. While the originators of the product category deployed exclusively as hardware, today most XML appliances are also available as software gateways and virtual appliances for environments like VMWare.
Mule is a lightweight enterprise service bus (ESB) and integration framework provided by MuleSoft. It has a Java-based platform and can also act as broker for interactions between other platforms such as .NET using web services or sockets.
Oracle Fusion Middleware consists of several software products from Oracle Corporation. FMW spans multiple services, including Java EE and developer tools, integration services, business intelligence, collaboration, and content management. FMW depends on open standards such as BPEL, SOAP, XML and JMS.
This article is a comparison of notable business integration and business process automation software.
IBM App Connect Enterprise (abbreviated as IBM ACE, formerly known as IBM Integration Bus, WebSphere Message Broker, WebSphere Business Integration Message Broker, WebSphere MQSeries Integrator and started life as MQSeries Systems Integrator. App Connect IBM's integration software offering, allowing business information to flow between disparate applications across multiple hardware and software platforms. Rules can be applied to the data flowing through user-authored integrations to route and transform the information. The product can be used as an Enterprise Service Bus supplying a communication channel between applications and services in a service-oriented architecture. App Connect from V11 supports container native deployments with highly optimised container start-up times.
A message broker is an intermediary computer program module that translates a message from the formal messaging protocol of the sender to the formal messaging protocol of the receiver. Message brokers are elements in telecommunication or computer networks where software applications communicate by exchanging formally-defined messages. Message brokers are a building block of message-oriented middleware (MOM) but are typically not a replacement for traditional middleware like MOM and remote procedure call (RPC).
System integration is defined in engineering as the process of bringing together the component sub-systems into one system and ensuring that the subsystems function together as a system, and in information technology as the process of linking together different computing systems and software applications physically or functionally, to act as a coordinated whole.
Oracle Enterprise Service Bus, a fundamental component of Oracle's Services-Oriented Architecture suite of products, provides integration of data and enterprise applications within an organisation and their connected enterprises.
Enterprise Integration Patterns is a book by Gregor Hohpe and Bobby Woolf and describes 65 patterns for the use of enterprise application integration and message-oriented middleware in the form of a pattern language.
An integration platform is software which integrates different applications and services. It differentiates itself from the enterprise application integration which has a focus on supply chain management. It uses the idea of system integration to create an environment for engineers.
A canonical model is a design pattern used to communicate between different data formats. Essentially: create a data model which is a superset of all the others ("canonical"), and create a "translator" module or layer to/from which all existing modules exchange data with other modules. The canonical model acts as a middleman. Each model now only needs to know how to communicate with the canonical model and dont need to know the implementation details of the other modules.
The JBoss Enterprise SOA Platform is free software/open-source Java EE-based service-oriented architecture (SOA) software. The JBoss Enterprise SOA Platform is part of the JBoss Enterprise Middleware portfolio of software. The JBoss Enterprise SOA Platform enables enterprises to integrate services, handle business events, and automate business processes, linking IT resources, data, services and applications. Because it is Java-based, the JBoss application server operates cross-platform: usable on any operating system that supports Java. The JBoss SOA Platform was developed by JBoss, now a division of Red Hat.
Middleware is a type of computer software program that provides services to software applications beyond those available from the operating system. It can be described as "software glue".