Alnico is a family of iron alloys which, in addition to iron are composed primarily of aluminium (Al), nickel (Ni), and cobalt (Co), hence the acronym [1] al-ni-co. They also include copper, and sometimes titanium. Alnico alloys are ferromagnetic, and are used to make permanent magnets. Before the development of rare-earth magnets in the 1970s, they were the strongest permanent magnet type. Other trade names for alloys in this family are: Alni, Alcomax, Hycomax, Columax, and Ticonal. [2]
The composition of alnico alloys is typically 8–12% Al, 15–26% Ni, 5–24% Co, up to 6% Cu, up to 1% Ti, and the rest is Fe. The development of alnico began in 1931, when T. Mishima in Japan discovered that an alloy of iron, nickel, and aluminum had a coercivity of 400 oersteds (32 kA/m), double that of the best magnet steels of the time. [3]
Alnico alloys can be magnetised to produce strong magnetic fields and have a high coercivity (resistance to demagnetization), thus making strong permanent magnets. Of the more commonly available magnets, only rare-earth magnets such as neodymium and samarium-cobalt are stronger. Alnico magnets produce magnetic field strength at their poles as high as 1500 gauss (0.15 tesla), or about 3000 times the strength of Earth's magnetic field. Some alnico brands are isotropic and can be efficiently magnetized in any direction. Other types, such as alnico 5 and alnico 8, are anisotropic, each having a preferred direction of magnetization, or orientation. Anisotropic alloys generally have greater magnetic capacity in a preferred orientation than isotropic types. Alnico's remanence (Br) may exceed 12,000 G (1.2 T), its coercivity (Hc) can be up to 1000 oersteds (80 kA/m), its maximum energy product ((BH)max) can be up to 5.5 MG·Oe (44 T·A/m). Therefore, alnico can produce a strong magnetic flux in closed magnetic circuits, but has relatively small resistance against demagnetization. The field strength at the poles of any permanent magnet depends very much on the shape and is usually well below the remanence strength of the material.
Alnico alloys have some of the highest Curie temperatures of any magnetic material, around 800 °C (1,470 °F), although the maximal working temperature is typically limited to around 538 °C (1,000 °F). [4] They are the only magnets that have useful magnetism even when heated red-hot. [5] This property, as well as its brittleness and high melting point, results from the strong tendency toward order due to intermetallic bonding between aluminum and other constituents. They are also one of the most stable magnets if handled properly. Alnico magnets are electrically conductive, unlike ceramic magnets.[ citation needed ] Alnico 3 has a melting temperature of 1200 - 1450 °C. [6]
MMPA class | IEC code ref. | Composition by weight (Fe comprises remainder) | Magnetic properties | Physical properties | Thermal properties | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max. energy product, (BH)max | Residual induction, Br | Coercive force, Hc | Intrinsic coercive force, Hci | Density | Tensile strength | Transverse modulus of rupture | HRC | Thermal expansion coefficient (10−6 per °C) | Electrical resistivity, at 20 °C (μΩ·cm) | Reversible temp. coefficient, (% per °C) | Curie temp. | Max. service temp. | ||||||||||||||||||
Al | Ni | Co | Cu | Ti | (MGOe) | (kJ/m3) | (gauss) | (mT) | (Oe) | (kA/m) | (Oe) | (kA/m) | (lb/in3) | (g/cm3) | (psi) | (MPa) | (psi) | (MPa) | Near Br | Near max. energy prod. | Near Hc | (°C) | (°F) | (°C) | (°F) | |||||
Isotropic cast AlNiCo | ||||||||||||||||||||||||||||||
Alnico 1 | R1-0-1 | 12 | 21 | 5 | 3 | - | 1.4 | 11.1 | 7200 | 720 | 470 | 37 | 480 | 38 | 0.249 | 6.9 | 4000 | 28 | 14000 | 97 | 45 | 12.6 | 75 | |||||||
Alnico 2 | R1-0-4 | 10 | 19 | 13 | 3 | - | 1.7 | 13.5 | 7500 | 750 | 560 | 45 | 580 | 46 | 0.256 | 7.1 | 3000 | 21 | 7000 | 48 | 45 | 12.4 | 65 | -0.03 | -0.02 | -0.02 | 810 | 1490 | 450 | 840 |
Alnico 3 | R1-0-2 | 12 | 25 | - | 3 | - | 1.35 | 10.7 | 7000 | 700 | 480 | 38 | 500 | 40 | 0.249 | 6.9 | 12000 | 83 | 23000 | 158 | 45 | 13.0 | 60 | |||||||
Anisotropic cast AlNiCo | ||||||||||||||||||||||||||||||
Alnico 5 | R1-1-1 | 8 | 14 | 24 | 3 | - | 5.5 | 43.8 | 12800 | 1280 | 640 | 51 | 640 | 51 | 0.264 | 7.3 | 5400 | 37 | 10500 | 72 | 50 | 11.4 | 47 | -0.02 | -0.015 | +0.01 | 860 | 1580 | 525 | 975 |
Alnico 5DG | R1-1-2 | 8 | 14 | 24 | 3 | - | 6.5 | 57.7 | 13300 | 1330 | 670 | 53 | 670 | 53 | 0.264 | 7.3 | 5200 | 36 | 9000 | 62 | 50 | 11.4 | 47 | |||||||
Alnico 5-7 | R1-1-3 | 8 | 14 | 24 | 3 | - | 7.5 | 59.7 | 13500 | 1350 | 740 | 59 | 740 | 59 | 0.264 | 7.3 | 5000 | 34 | 8000 | 55 | 50 | 11.4 | 47 | |||||||
Alnico 6 | R1-1-4 | 8 | 16 | 24 | 3 | 1 | 3.9 | 31.0 | 10500 | 1050 | 780 | 62 | 800 | 64 | 0.265 | 7.3 | 23000 | 158 | 45000 | 310 | 50 | 11.4 | 50 | -0.02 | -0.015 | +0.03 | 860 | 1580 | 525 | 975 |
Alnico 8 | R1-1-5 | 7 | 15 | 35 | 4 | 5 | 5.3 | 42.2 | 8200 | 820 | 1650 | 131 | 1860 | 148 | 0.262 | 7.3 | 10000 | 59 | 30000 | 207 | 55 | 11.0 | 53 | -0.025 | -0.01 | +0.01 | 860 | 1580 | 550 | 1020 |
Alnico 8HC | R1-1-7 | 8 | 14 | 38 | 3 | 8 | 5.0 | 39.8 | 7200 | 720 | 1900 | 151 | 2170 | 173 | 0.262 | 7.3 | 10000 | 59 | 30000 | 207 | 55 | 11.0 | 54 | -0.025 | -0.01 | +0.01 | 860 | 1580 | 550 | 1020 |
Alnico 9 | R1-1-6 | 7 | 15 | 35 | 4 | 5 | 9.0 | 71.6 | 10600 | 1060 | 1500 | 119 | 1500 | 119 | 0.262 | 7.3 | 7000 | 48 | 8000 | 55 | 55 | 110. | 53 | -0.025 | -0.01 | +0.01 | 860 | 1580 | 550 | 1020 |
Isotropic sintered AlNiCo | ||||||||||||||||||||||||||||||
Alnico 2 | R1-0-4 | 10 | 19 | 13 | 3 | - | 1.5 | 11.9 | 7100 | 710 | 550 | 44 | 570 | 45 | 0.246 | 6.8 | 65000 | 448 | 70000 | 483 | 45 | 123.4 | 68 | |||||||
Anisotropic sintered AlNiCo | ||||||||||||||||||||||||||||||
Alnico 5 | R1-1-10 | 8 | 14 | 24 | 3 | - | 3.9 | 31.0 | 10900 | 1090 | 620 | 49 | 630 | 50 | 0.250 | 6.9 | 50000 | 345 | 55000 | 379 | 45 | 11.3 | 50 | |||||||
Alnico 6 | R1-1-11 | 8 | 15 | 24 | 3 | 1 | 2.9 | 23.1 | 9400 | 940 | 790 | 63 | 820 | 65 | 0.250 | 6.9 | 55000 | 379 | 100000 | 689 | 45 | 11.4 | 54 | |||||||
Alnico 8 | R1-1-12 | 7 | 15 | 35 | 4 | 5 | 4.0 | 31.8 | 7400 | 740 | 1500 | 119 | 1690 | 134 | 0.252 | 7.0 | 50000 | 345 | 55000 | 379 | 45 | 11.0 | 54 | |||||||
Alnico 8HC | R1-1-13 | 7 | 14 | 38 | 3 | 8 | 4.5 | 35.8 | 6700 | 670 | 1800 | 143 | 2020 | 161 | 0.252 | 7.0 | 55000 | 379 | 45 | 11.0 | 54 |
As of 2018, Alnico magnets cost about 44 USD/kg (US$20/lb) or US$4.30/BHmax. [7]
Alnico magnets are traditionally classified using numbers assigned by the Magnetic Materials Producers Association (MMPA), for example, alnico 3 or alnico 5. These classifications indicate chemical composition and magnetic properties. (The classification numbers themselves do not directly relate to the magnet's properties; for instance, a higher number does not necessarily indicate a stronger magnet.) [8]
These classification numbers, while still in use, have been deprecated in favor of a new system by the MMPA, which designates Alnico magnets based on maximum energy product in megagauss-oersteds and intrinsic coercive force as kilo oersted, as well as an IEC classification system. [8]
Alnico magnets are produced by casting or sintering processes. [9] Cast alnico is produced by conventional methods using resin bonded sand molds, which can be intricate and detailed, thereby allowing for complex shapes to be produced. [10] The produced alnico magnet typically has a rough surface. [11] This process has higher initial tooling costs for mold creation. [12] Sintered alnico magnets are formed using powdered metal manufacturing methods. While sintering can also produce a range of shapes, it may not be as suitable for extremely intricate or detailed designs compared to casting. [10] [13]
Most alnico produced is anisotropic, meaning that the magnetic direction of the grains is randomly oriented when initially made. Anisotropic alnico magnets are oriented by heating above a critical temperature and cooling in the presence of a magnetic field. Both isotropic and anisotropic alnico require proper heat treatment to develop optimal magnetic properties. Without it, alnico's coercivity is about 10 Oe, comparable to technical iron, a soft magnetic material. After the heat treatment alnico becomes a composite material, named "precipitation material"—it consists of iron- and cobalt-rich [14] precipitates in a rich-NiAl matrix.
Alnico's anisotropy is oriented along the desired magnetic axis by applying an external magnetic field to it during the precipitate particle nucleation, which occurs when cooling from 900 °C (1,650 °F) to 800 °C (1,470 °F), near the Curie point. There are local anisotropies of different orientations without an external field due to spontaneous magnetization. The precipitate structure is a "barrier" against magnetization changes, as it prefers few magnetization states requiring much energy to get the material into any intermediate state. Also, a weak magnetic field shifts the magnetization of the matrix phase only and is reversible.
Alnico magnets are widely used in industrial and consumer applications where strong permanent magnets are needed. Examples are electric motors, electric guitar pickups, microphones, sensors, loudspeakers, magnetron tubes, and cow magnets. In many applications they are being superseded by rare-earth magnets, whose stronger fields (Br) and larger energy products (B·Hmax) allow smaller-size magnets to be used for a given application.
The high-temperature resistance of alnico magnets leads to many uses that cannot be filled by less resistant magnets, such as in magnetic stirring hotplates.
Ferromagnetism is a property of certain materials that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagnetic materials are noticeably attracted to a magnet, which is a consequence of their substantial magnetic permeability.
A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.
Remanence or remanent magnetization or residual magnetism is the magnetization left behind in a ferromagnetic material after an external magnetic field is removed. Colloquially, when a magnet is "magnetized", it has remanence. The remanence of magnetic materials provides the magnetic memory in magnetic storage devices, and is used as a source of information on the past Earth's magnetic field in paleomagnetism. The word remanence is from remanent + -ence, meaning "that which remains".
Coercivity, also called the magnetic coercivity, coercive field or coercive force, is a measure of the ability of a ferromagnetic material to withstand an external magnetic field without becoming demagnetized. Coercivity is usually measured in oersted or ampere/meter units and is denoted HC.
A neodymium magnet (also known as NdFeB, NIB or Neo magnet) is a permanent magnet made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. They are the most widely used type of rare-earth magnet.
A magnetic shape-memory alloy (MSMA) is a type of smart material that can undergo significant and reversible changes in shape in response to a magnetic field. This behavior arises due to a combination of magnetic and shape-memory properties within the alloy, allowing it to produce mechanical motion or force under magnetic actuation. MSMAs are commonly made from ferromagnetic materials, particularly nickel-manganese-gallium (Ni-Mn-Ga), and are useful in applications requiring rapid, controllable, and repeatable movement.
Magnetic hysteresis occurs when an external magnetic field is applied to a ferromagnet such as iron and the atomic dipoles align themselves with it. Even when the field is removed, part of the alignment will be retained: the material has become magnetized. Once magnetized, the magnet will stay magnetized indefinitely. To demagnetize it requires heat or a magnetic field in the opposite direction. This is the effect that provides the element of memory in a hard disk drive.
Bismanol is a magnetic alloy of bismuth and manganese developed by the US Naval Ordnance Laboratory.
Rock magnetism is the study of the magnetic properties of rocks, sediments and soils. The field arose out of the need in paleomagnetism to understand how rocks record the Earth's magnetic field. This remanence is carried by minerals, particularly certain strongly magnetic minerals like magnetite. An understanding of remanence helps paleomagnetists to develop methods for measuring the ancient magnetic field and correct for effects like sediment compaction and metamorphism. Rock magnetic methods are used to get a more detailed picture of the source of the distinctive striped pattern in marine magnetic anomalies that provides important information on plate tectonics. They are also used to interpret terrestrial magnetic anomalies in magnetic surveys as well as the strong crustal magnetism on Mars.
A samarium–cobalt (SmCo) magnet, a type of rare-earth magnet, is a strong permanent magnet made of two basic elements: samarium and cobalt.
A rare-earth magnet is a strong permanent magnet made from alloys of rare-earth elements. Developed in the 1970s and 1980s, rare-earth magnets are the strongest type of permanent magnets made, producing significantly stronger magnetic fields than other types such as ferrite or alnico magnets. The magnetic field typically produced by rare-earth magnets can exceed 1.2 teslas, whereas ferrite or ceramic magnets typically exhibit fields of 0.5 to 1 tesla.
A ferrite is one of a family of iron oxide-containing magnetic ceramic materials. They are ferrimagnetic, meaning they are attracted by magnetic fields and can be magnetized to become permanent magnets. Unlike many ferromagnetic materials, most ferrites are not electrically conductive, making them useful in applications like magnetic cores for transformers to suppress eddy currents.
A magnetic alloy is a combination of various metals from the periodic table such as ferrite that exhibits magnetic properties such as ferromagnetism. Typically the alloy contains one of the three main magnetic elements : iron (Fe), nickel (Ni), or cobalt (Co). However, alloys such as Heusler alloys exhibit ferromagnetic properties without any of the preceding 3 elements, and alloys of iron and manganese such as stainless steels may be essentially nonmagnetic at room temperature. Magnetic properties of an alloy are highly dependent not only on the composition but also on heat treatment and mechanical processing.
The article Ferromagnetic material properties is intended to contain a glossary of terms used to describe ferromagnetic materials, and magnetic cores.
In magnetism, single domain refers to the state of a ferromagnet in which the magnetization does not vary across the magnet. A magnetic particle that stays in a single domain state for all magnetic fields is called a single domain particle. Such particles are very small. They are also very important in a lot of applications because they have a high coercivity. They are the main source of hardness in hard magnets, the carriers of magnetic storage in tape drives, and the best recorders of the ancient Earth's magnetic field.
In electromagnetism, the Stoner–Wohlfarth model is a widely used model for the magnetization of ferromagnets with a single-domain. It is a simple example of magnetic hysteresis and is useful for modeling small magnetic particles in magnetic storage, biomagnetism, rock magnetism and paleomagnetism.
A horseshoe magnet is either a permanent magnet or an electromagnet made in the shape of a horseshoe. The permanent kind has become the most widely recognized symbol for magnets. It is usually depicted as red and marked with 'North' and 'South' poles. Although rendered obsolete in the 1950s by squat, cylindrical magnets made of modern materials, horseshoe magnets are still regularly shown in elementary school textbooks. Historically, they were a solution to the problem of making a compact magnet that does not destroy itself in its own demagnetizing field.
An exchange spring magnet is a magnetic material with high coercivity and high saturation properties derived from the exchange interaction between a hard magnetic material and a soft magnetic material, respectively.
A permanent magnet motor is a type of electric motor that uses permanent magnets for the field excitation and a wound armature. The permanent magnets can either be stationary or rotating; interior or exterior to the armature for a radial flux machine or layered with the armature for an axial flux topology. The schematic shows a permanent magnet motor with stationary magnets outside of a brushed armature.
In magnetics, the maximum energy product is an important figure-of-merit for the strength of a permanent magnet material. It is often denoted (BH)max and is typically given in units of either kJ/m3 or MGOe. 1 MGOe is equivalent to 7.958 kJ/m3.