7085 aluminium alloy

Last updated

7085 aluminum alloy is wrought type alloy. It has very high zinc percentage. It also contains magnesium and copper. [1]

Contents

Chemical composition

Properties [1] Value
Density2.85 g/cc
Elements [1] Weight Percentage (%)
Aluminum87.62 - 90.42 %
Chromium<= 0.04 %
Copper1.3 - 2.0 %
Iron<= 0.08 %
Magnesium1.2 - 1.8 %
Manganese<= 0.04 %
Other, each<= 0.05 %
Other, total<= 0.15 %
Silicon<= 0.06 %
Titanium<= 0.06 %
Zinc7.0 - 8.0 %
Zirconium0.08 - 0.15 %

Applications

  1. Thick plate
  2. Aerospace industry [1]

Related Research Articles

Aluminium–silicon alloys or Silumin is a general name for a group of lightweight, high-strength aluminium alloys based on an aluminum–silicon system (AlSi) that consist predominantly of aluminum - with silicon as the quantitatively most important alloying element. Pure AlSi alloys cannot be hardened, the commonly used alloys AlSiCu and AlSiMg can be hardened. The hardening mechanism corresponds to that of AlCu and AlMgSi. The rarely used wrought alloys in the 4000 series and the predominantly used cast alloys are standardised in the 40000 series.

<span class="mw-page-title-main">Aluminium alloy</span> Alloy in which aluminium is the predominant metal

An aluminium alloy is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions. Cast aluminium alloys yield cost-effective products due to the low melting point, although they generally have lower tensile strengths than wrought alloys. The most important cast aluminium alloy system is Al–Si, where the high levels of silicon (4–13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required.

Aluminium–lithium alloys are a set of alloys of aluminium and lithium, often also including copper and zirconium. Since lithium is the least dense elemental metal, these alloys are significantly less dense than aluminium. Commercial Al–Li alloys contain up to 2.45% lithium by mass.

6061 aluminium alloy is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminium for general-purpose use.

7075 aluminium alloy (AA7075) is an aluminium alloy with zinc as the primary alloying element. It has excellent mechanical properties and exhibits good ductility, high strength, toughness, and good resistance to fatigue. It is more susceptible to embrittlement than many other aluminium alloys because of microsegregation, but has significantly better corrosion resistance than the alloys from the 2000 series. It is one of the most commonly used aluminium alloys for highly stressed structural applications and has been extensively used in aircraft structural parts.

AA 7039 is an aluminum alloy principally containing zinc (3.5–4.5%) as an alloying element. It is heat treatable wrought aluminum alloy. It is used for making armour suites.

Sustained load cracking, or SLC, is a metallurgical phenomenon that occasionally develops in pressure vessels and structural components under stress for sustained periods of time.

6005A aluminium alloy is an alloy in the wrought aluminium-magnesium-silicon family. It is closely related, but not identical, to 6005 aluminium alloy. Between those two alloys, 6005A is more heavily alloyed, but the difference does not make a marked impact on material properties. It can be formed by extrusion, forging or rolling, but as a wrought alloy it is not used in casting. It cannot be work hardened, but is commonly heat treated to produce tempers with a higher strength at the expense of ductility.

6060 aluminium alloy is an alloy in the wrought aluminium-magnesium-silicon family. It is much more closely related to the alloy 6063 than to 6061. The main difference between 6060 and 6063 is that 6063 has a slightly higher magnesium content. It can be formed by extrusion, forging or rolling, but as a wrought alloy it is not used in casting. It cannot be work hardened, but is commonly heat treated to produce tempers with a higher strength but lower ductility.

6105 aluminium alloy is an alloy in the wrought aluminium-magnesium-silicon family. It is one of the least common of the alloys in this series. While most wrought aluminium alloys are covered by multiple standards, 6105 is only dealt with in ASTM B221: Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes. It is formed by extrusion, and supplied in heat treated form. It can alternately referred to by the UNS designation A96105.

6162 aluminium alloy is an alloy in the wrought aluminium-magnesium-silicon family. It is related to 6262 aluminium alloy in that Aluminum Association designations that only differ in the second digit are variations on the same alloy. It is similar to 6105 aluminium alloy, both in alloy composition and the fact that it is only really used in extrusions. However, as a wrought alloy, it can also be formed by rolling, forging, and similar processes, should the need arise. It is supplied in heat treated form. It can be referred to by the UNS designation A96162, and is covered by the standard ASTM B221: Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.

4043 aluminium alloy is a wrought aluminium alloy with good corrosion resistance typically used as filler material for welding of aluminium parts. It contains high amounts of silicon and trace amounts of other metals. It is grey in appearance and is sold as either welding wire or welding rod for TIG/MIG processes.

Aluminium 7010 alloy is a wrought aluminum alloy. It is medium strength, having high corrosion and damage tolerance ability.

The Aluminum / aluminum 7049 alloy is a forging aluminum alloy. It has a high stress, corrosion, and cracking resistance and high machinability. Alloy can be hot formed. It can not be weldable.

Aluminium 7050 alloy is a heat treatable alloy. It has high toughness, high strength. It has high stress corrosion cracking resistance. It has electric conductivity of value having 40 percent of copper. 7050 aluminium is known as a commercial aerospace alloy.

7055 alloy is heat treatable wrought aluminum alloy. It has high ultimate tensile strength value of 593 MPa.

Aluminium 7150 alloy is a heat treatable wrought alloy. It is used in the aerospace industry for manufacturing aircraft components. Heat treatment can improve its anti-corrosion properties with a low corresponding decrease in strength.

7178 aluminum alloy is wrought alloy. It has high zinc content. After annealing, aluminum alloy 7178 has high machinability. Resistance welding can be used.

7475 aluminum alloy (Adirium) is a wrought alloy with high zinc weight percentage. It also contains magnesium, silicon and chromium.

Aluminium brass is a technically rather uncommon term for high-strength and partly seawater-resistant copper-zinc cast and wrought alloys with 55–66% copper, up to 7% aluminium, up to 4.5% iron, and 5% manganese. Aluminium bronze is technically correct as bronze, a zinc-free copper-tin casting alloy with aluminium content.

References

  1. 1 2 3 4 "7085 aluminum alloy composition".