1070 aluminium alloy

Last updated

1070 is a pure aluminium alloy. It is a wrought alloy with a high corrosion resistance and an excellent brazing ability. [1]

Contents

1070 Aluminium alloy has aluminium, iron, silicon, zinc, vanadium, copper, titanium, magnesium, and manganese as minor elements. [2]

Chemical Composition

Element [2] Content (%)
Aluminum≥ 99.7
Iron≤ 0.25
Silicon≤ 0.20
Zinc≤ 0.040
Vanadium≤ 0.050
Copper≤ 0.040
Titanium≤ 0.030
Magnesium≤ 0.030
Manganese≤ 0.030
Other Elements≤ 0.030

Applications

Aluminium 1070 alloy is used in the following areas: [2]

  1. General industrial components
  2. Building and construction
  3. Transport
  4. Electrical material
  5. PS plates
  6. Strips for ornaments
  7. Communication cables
  8. Refrigerator and freezer cabinets

Related Research Articles

<span class="mw-page-title-main">Aluminium</span> Chemical element, symbol Al and atomic number 13

Aluminium is a chemical element; it has symbol Al and atomic number 13. Aluminium has a density lower than that of other common metals, about one-third that of steel. It has a great affinity towards oxygen, forming a protective layer of oxide on the surface when exposed to air. Aluminium visually resembles silver, both in its color and in its great ability to reflect light. It is soft, nonmagnetic, and ductile. It has one stable isotope, 27Al, which is highly abundant, making aluminium the twelfth-most common element in the universe. The radioactivity of 26Al, a more unstable isotope, leads to it being used in radiometric dating.

<span class="mw-page-title-main">Duralumin</span> Trade name of age-hardenable aluminium alloy

Duralumin is a trade name for one of the earliest types of age-hardenable aluminium–copper alloys. The term is a combination of Dürener and aluminium. Its use as a trade name is obsolete. Today the term mainly refers to aluminium-copper alloys, designated as the 2000 series by the international alloy designation system (IADS), as with 2014 and 2024 alloys used in airframe fabrication.

<span class="mw-page-title-main">Aluminium bronze</span> Alloy of copper and aluminum

Aluminium bronze is a type of bronze in which aluminium is the main alloying metal added to copper, in contrast to standard bronze or brass. A variety of aluminium bronzes of differing compositions have found industrial use, with most ranging from 5% to 11% aluminium by weight, the remaining mass being copper; other alloying agents such as iron, nickel, manganese, and silicon are also sometimes added to aluminium bronzes.

<span class="mw-page-title-main">Aluminium recycling</span> Reuse of scrap aluminium

Aluminium recycling is the process in which secondary commercial aluminium is created from scrap or other forms of end-of-life or otherwise unusable aluminium. It involves re-melting the metal, which is cheaper and more energy-efficient than the production of virgin aluminium by electrolysis of alumina (Al2O3) refined from raw bauxite by use of the Bayer and Hall–Héroult processes.

<span class="mw-page-title-main">Aluminium alloy</span> Alloy in which aluminium is the predominant metal

An aluminium alloy (UK/IUPAC) or aluminum alloy is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions. Cast aluminium alloys yield cost-effective products due to the low melting point, although they generally have lower tensile strengths than wrought alloys. The most important cast aluminium alloy system is Al–Si, where the high levels of silicon (4–13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required.

<span class="mw-page-title-main">Native metal</span> Form of metal

A native metal is any metal that is found pure in its metallic form in nature. Metals that can be found as native deposits singly or in alloys include aluminium, antimony, arsenic, bismuth, cadmium, chromium, cobalt, indium, iron, manganese, molybdenum, nickel, niobium, rhenium, selenium, tantalum, tellurium, tin, titanium, tungsten, vanadium, and zinc, as well as the gold group and the platinum group. Among the alloys found in native state have been brass, bronze, pewter, German silver, osmiridium, electrum, white gold, silver-mercury amalgam, and gold-mercury amalgam.

Aluminium–lithium alloys are a set of alloys of aluminium and lithium, often also including copper and zirconium. Since lithium is the least dense elemental metal, these alloys are significantly less dense than aluminium. Commercial Al–Li alloys contain up to 2.45% lithium by mass.

6061 aluminium alloy is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminium for general-purpose use.

7075 aluminium alloy (AA7075) is an aluminium alloy with zinc as the primary alloying element. It has excellent mechanical properties and exhibits good ductility, high strength, toughness, and good resistance to fatigue. It is more susceptible to embrittlement than many other aluminium alloys because of microsegregation, but has significantly better corrosion resistance than the alloys from the 2000 series. It is one of the most commonly used aluminium alloys for highly stressed structural applications and has been extensively used in aircraft structural parts.

<span class="mw-page-title-main">Alclad</span>

Alclad is a corrosion-resistant aluminium sheet formed from high-purity aluminium surface layers metallurgically bonded to high-strength aluminium alloy core material. It has a melting point of about 500 °C (932 °F). Alclad is a trademark of Alcoa but the term is also used generically.

<span class="mw-page-title-main">Hiduminium</span> Aluminum alloy

The Hiduminium alloys or R.R. alloys are a series of high-strength, high-temperature aluminium alloys, developed for aircraft use by Rolls-Royce ("RR") before World War II. They were manufactured and later developed by High Duty Alloys Ltd. The name Hi-Du-Minium is derived from that of High Duty Aluminium Alloys.

AA 7039 is an aluminum alloy principally containing zinc (3.5–4.5%) as an alloying element. It is heat treatable wrought aluminum alloy. It is used for making armour suites.

Sustained load cracking, or SLC, is a metallurgical phenomenon that occasionally develops in pressure vessels and structural components under stress for sustained periods of time.

7068 aluminium alloy is one of the strongest commercially available aluminium alloys, with a tensile strength comparable to that of some steels. This material, also known as an aircraft alloy, is heat treatable.

5005 aluminium alloy is an aluminium–magnesium alloy with good resistance to atmospheric corrosion. It is used in decorative and architectural applications.

Aluminium 7010 alloy is a wrought aluminum alloy. It is medium strength, having high corrosion and damage tolerance ability.

Aluminium 7050 alloy is a heat treatable alloy. It has high toughness, high strength. It has high stress corrosion cracking resistance. It has electric conductivity of value having 40 percent of copper. 7050 aluminium is known as a commercial aerospace alloy.

5182 Aluminium alloy has magnesium and manganese as minor elements. 5182 Aluminium alloy is used in the automobile industry for making various parts of vehicles.

1145 Aluminium alloy is a nearly pure aluminium alloy with minor impurities like copper, manganese, magnesium, zinc, titanium, silicon and iron.

6010 Aluminium alloy has Aluminium as the major element, and has silicon, magnesium, manganese and zinc as minor elements.

References

  1. "Aluminium 1070 alloy". Archived from the original on 2020-10-31.
  2. 1 2 3 "1070 ALuminium alloy". 3 May 2013. Archived from the original on 2020-12-05.

Aluminium alloy table