Octafluorocubane

Last updated
Octafluorocubane
C8F8 structure.svg
Names
IUPAC name
1,2,3,4,5,6,7,8-octafluorocubane
Other names
perfluorocubane
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/C8F8/c9-1-2(10)5(13)3(1,11)7(15)4(1,12)6(2,14)8(5,7)16
    Key: DLEOOIAXKVODBG-UHFFFAOYSA-N
  • C12(C3(C4(C1(C5(C2(C3(C45F)F)F)F)F)F)F)F
Properties
C8F8
Molar mass 248.075 g·mol−1
Appearancecolorless, sublimable
Density 2.429 g/cm3
Melting point 160.1–171.1 °C (320.2–340.0 °F; 433.2–444.2 K)
Related compounds
Related compounds
Octanitrocubane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Octafluorocubane or perfluorocubane is an organofluorine compound with the formula C8F8, consisting of eight carbon atoms joined into a cube, with a fluorine bonded to each carbon corner. It is a colorless, sublimable solid at room temperature. It has been of longstanding theoretical interest, but was not synthesised until 2022, when it was prepared in several steps from a cubane carboxylic ester beginning with its heptafluorination. According to X-ray crystallography, the C-C distances (1.570 Å) in octafluorocubane are identical in length to those in the parent cubane (1.572 Å). [1]

Octafluorocubane has attracted interest from theorists because of its unusual electronic structure, [2] which is indicated by its susceptibility to undergo reduction to a detectable anion C
8
F
8
, with the free electron trapped inside of the cube. [3]

The compound was voted "favorite molecule of 2022" by readers of Chemical & Engineering News . [4]

Related Research Articles

<span class="mw-page-title-main">Argon</span> Chemical element with atomic number 18 (Ar)

Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934%. It is more than twice as abundant as water vapor, 23 times as abundant as carbon dioxide, and more than 500 times as abundant as neon. Argon is the most abundant noble gas in Earth's crust, comprising 0.00015% of the crust.

<span class="mw-page-title-main">Carbon</span> Chemical element with atomic number 6 (C)

Carbon is a chemical element; it has symbol C and atomic number 6. It is nonmetallic and tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 electrons. It belongs to group 14 of the periodic table. Carbon makes up about 0.025 percent of Earth's crust. Three isotopes occur naturally, 12C and 13C being stable, while 14C is a radionuclide, decaying with a half-life of 5,700 years. Carbon is one of the few elements known since antiquity.

<span class="mw-page-title-main">Carbon nanotube</span> Allotropes of carbon with a cylindrical nanostructure

A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range (nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized:

<span class="mw-page-title-main">Carbon monoxide</span> Colourless, odourless, tasteless and toxic gas

Carbon monoxide is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simplest carbon oxide. In coordination complexes, the carbon monoxide ligand is called carbonyl. It is a key ingredient in many processes in industrial chemistry.

<span class="mw-page-title-main">Fullerene</span> Allotrope of carbon

A fullerene is an allotrope of carbon whose molecules consist of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to six atoms. The molecules may have hollow sphere- and ellipsoid-like forms, tubes, or other shapes.

In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to other atoms were fully ionic. It describes the degree of oxidation of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. Beside nearly-pure ionic bonding, many covalent bonds exhibit a strong ionicity, making oxidation state a useful predictor of charge.

<span class="mw-page-title-main">Carbonic acid</span> Chemical compound

Carbonic acid is a chemical compound with the chemical formula H2CO3. The molecule rapidly converts to water and carbon dioxide in the presence of water. However, in the absence of water, it is quite stable at room temperature. The interconversion of carbon dioxide and carbonic acid is related to the breathing cycle of animals and the acidification of natural waters.

In chemistry, diamondoids are generalizations of the carbon cage molecule known as adamantane (C10H16), the smallest unit cage structure of the diamond crystal lattice. Diamondoids also known as nanodiamonds or condensed adamantanes may include one or more cages (adamantane, diamantane, triamantane, and higher polymantanes) as well as numerous isomeric and structural variants of adamantanes and polymantanes. These diamondoids occur naturally in petroleum deposits and have been extracted and purified into large pure crystals of polymantane molecules having more than a dozen adamantane cages per molecule. These species are of interest as molecular approximations of the diamond cubic framework, terminated with C−H bonds.

Cubane is a synthetic hydrocarbon compound with the formula C8H8. It consists of eight carbon atoms arranged at the corners of a cube, with one hydrogen atom attached to each carbon atom. A solid crystalline substance, cubane is one of the Platonic hydrocarbons and a member of the prismanes. It was first synthesized in 1964 by Philip Eaton and Thomas Cole. Before this work, Eaton believed that cubane would be impossible to synthesize due to the "required 90 degree bond angles". The cubic shape requires the carbon atoms to adopt an unusually sharp 90° bonding angle, which would be highly strained as compared to the 109.45° angle of a tetrahedral carbon. Once formed, cubane is quite kinetically stable, due to a lack of readily available decomposition paths. It is the simplest hydrocarbon with octahedral symmetry.

<span class="mw-page-title-main">Conductive polymer</span> Organic polymers that conduct electricity

Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The main advantage of conductive polymers is that they are easy to process, mainly by dispersion. Conductive polymers are generally not thermoplastics, i.e., they are not thermoformable. But, like insulating polymers, they are organic materials. They can offer high electrical conductivity but do not show similar mechanical properties to other commercially available polymers. The electrical properties can be fine-tuned using the methods of organic synthesis and by advanced dispersion techniques.

<span class="mw-page-title-main">Graphene</span> Hexagonal lattice made of carbon atoms

Graphene is a carbon allotrope consisting of a single layer of atoms arranged in a honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating the presence of double bonds within the carbon structure.

<span class="mw-page-title-main">Superhard material</span> Material with Vickers hardness exceeding 40 gigapascals

A superhard material is a material with a hardness value exceeding 40 gigapascals (GPa) when measured by the Vickers hardness test. They are virtually incompressible solids with high electron density and high bond covalency. As a result of their unique properties, these materials are of great interest in many industrial areas including, but not limited to, abrasives, polishing and cutting tools, disc brakes, and wear-resistant and protective coatings.

Artificial photosynthesis is a chemical process that biomimics the natural process of photosynthesis. The term artificial photosynthesis is used loosely, referring to any scheme for capturing and then storing energy from sunlight by producing a fuel, specifically a solar fuel. An advantage of artificial photosynthesis would be that the solar energy could converted and stored. By contrast, using photovoltaic cells, sunlight is converted into electricity and then converted again into chemical energy for storage, with some necessary losses of energy associated with the second conversion. The byproducts of these reactions are environmentally friendly. Artificially photosynthesized fuel would be a carbon-neutral source of energy, but it has never been demonstrated in any practical sense. The economics of artificial photosynthesis are noncompetitive.

<span class="mw-page-title-main">Molybdenum hexacarbonyl</span> Chemical compound

Molybdenum hexacarbonyl (also called molybdenum carbonyl) is the chemical compound with the formula Mo(CO)6. This colorless solid, like its chromium, tungsten, and seaborgium analogues, is noteworthy as a volatile, air-stable derivative of a metal in its zero oxidation state.

<span class="mw-page-title-main">Endohedral fullerene</span> Fullerene molecule with additional atoms, ions, or clusters enclosed within itself

Endohedral fullerenes, also called endofullerenes, are fullerenes that have additional atoms, ions, or clusters enclosed within their inner spheres. The first lanthanum C60 complex called La@C60 was synthesized in 1985. The @ (at sign) in the name reflects the notion of a small molecule trapped inside a shell. Two types of endohedral complexes exist: endohedral metallofullerenes and non-metal doped fullerenes.

<span class="mw-page-title-main">Corannulene</span> Chemical compound

Corannulene is a polycyclic aromatic hydrocarbon with chemical formula C20H10. The molecule consists of a cyclopentane ring fused with 5 benzene rings, so another name for it is [5]circulene. It is of scientific interest because it is a geodesic polyarene and can be considered a fragment of buckminsterfullerene. Due to this connection and also its bowl shape, corannulene is also known as a buckybowl. Buckybowls are fragments of buckyballs. Corannulene exhibits a bowl-to-bowl inversion with an inversion barrier of 10.2 kcal/mol (42.7 kJ/mol) at −64 °C.

<span class="mw-page-title-main">Boron arsenide</span> Chemical compound

Boron arsenide is a chemical compound involving boron and arsenic, usually with a chemical formula BAs. Other boron arsenide compounds are known, such as the subarsenide B12As2. Chemical synthesis of cubic BAs is very challenging and its single crystal forms usually have defects.

In enzymology, carbon monoxide dehydrogenase (CODH) (EC 1.2.7.4) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cubane-type cluster</span> Molecular structure which forms a cube

A cubane-type cluster is an arrangement of atoms in a molecular structure that forms a cube. In the idealized case, the eight vertices are symmetry equivalent and the species has Oh symmetry. Such a structure is illustrated by the hydrocarbon cubane. With chemical formula C8H8, cubane has carbon atoms at the corners of a cube and covalent bonds forming the edges. Most cubanes have more complicated structures, usually with nonequivalent vertices. They may be simple covalent compounds or macromolecular or supramolecular cluster compounds.

<span class="mw-page-title-main">Cryogenic electron microscopy</span> Form of transmission electron microscopy (TEM)

Cryogenic electron microscopy (cryo-EM) is a cryomicroscopy technique applied on samples cooled to cryogenic temperatures. For biological specimens, the structure is preserved by embedding in an environment of vitreous ice. An aqueous sample solution is applied to a grid-mesh and plunge-frozen in liquid ethane or a mixture of liquid ethane and propane. While development of the technique began in the 1970s, recent advances in detector technology and software algorithms have allowed for the determination of biomolecular structures at near-atomic resolution. This has attracted wide attention to the approach as an alternative to X-ray crystallography or NMR spectroscopy for macromolecular structure determination without the need for crystallization.

References

  1. Sugiyama M, Akiyama M, Yonezawa Y, Komaguchi K, Higashi M, Nozaki K, Okazoe T (August 2022). "Electron in a cube: Synthesis and characterization of perfluorocubane as an electron acceptor". Science. 377 (6607): 756–759. doi:10.1126/science.abq0516. PMID   35951682. S2CID   251515925.
  2. Pichierri, F. Substituent effects in cubane and hypercubane: a DFT and QTAIM study. Theor Chem Acc 2017; 136: 114. doi : 10.1007/s00214-017-2144-5
  3. Krafft MP, Riess JG (August 2022). "Perfluorocubane-a tiny electron guzzler". Science. 377 (6607): 709. doi:10.1126/science.adc9195. PMID   35951708. S2CID   251517529.
  4. "A cube catches an electron". Chemical & Engineering News. December 2022. ISSN   1520-605X . Retrieved 2022-12-30.