Plomestane

Last updated
Plomestane
Plomestane.svg
Clinical data
Other namesMDL-18962; Propargylestrenedione; PED; 10-(2-Propyn-1-yl)estr-4-ene-3,17-dione; 10-Propargylestr-4-ene-3,17-dione
ATC code
  • None
Identifiers
  • 10H-(2-Propynyl)-estr-4-ene-3,17-dione
CAS Number
PubChem CID
ChemSpider
UNII
Chemical and physical data
Formula C21H26O2
Molar mass 310.437 g·mol−1
3D model (JSmol)
  • O=C4\C=C3/[C@@](CC#C)([C@H]2CC[C@@]1(C(=O)CC[C@H]1[C@@H]2CC3)C)CC4
  • InChI=1S/C21H26O2/c1-3-10-21-12-8-15(22)13-14(21)4-5-16-17-6-7-19(23)20(17,2)11-9-18(16)21/h1,13,16-18H,4-12H2,2H3/t16-,17-,18-,20-,21-/m0/s1
  • Key:JKPDEYAOCSQBSZ-OEUJLIAZSA-N

Plomestane (INN Tooltip International Nonproprietary Name, USAN Tooltip United States Adopted Name; former developmental code name MDL-18962; also known as propargylestrenedione, PED) is a steroidal, irreversible aromatase inhibitor which was under development by Marion Merrell Dow/Hoechst Marion Russell (now Hoechst AG) as an antineoplastic agent for the treatment of breast cancer. [1] [2] [3] [4] [5] It was found to be effective in preclinical studies and was also found to produce few adverse effects in human clinical trials, significantly reducing estrogen levels with a single administration. [5] However, development of the drug for clinical use was halted due to "technical issues" and it was never marketed. [6]

In addition to its activity as an aromatase inhibitor, plomestane has weak androgenic properties. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Methyltestosterone</span> Chemical compound

Methyltestosterone, sold under the brand names Android, Metandren, and Testred among others, is an androgen and anabolic steroid (AAS) medication which is used in the treatment of low testosterone levels in men, delayed puberty in boys, at low doses as a component of menopausal hormone therapy for menopausal symptoms like hot flashes, osteoporosis, and low sexual desire in women, and to treat breast cancer in women. It is taken by mouth or held in the cheek or under the tongue.

<span class="mw-page-title-main">Metandienone</span> Androgen and anabolic steroid

Metandienone, also known as methandienone or methandrostenolone and sold under the brand name Dianabol (D-Bol) among others, is an androgen and anabolic steroid (AAS) medication which is still quite often used because of its affordability and effectiveness for bulking cycles. It is also used non-medically for physique- and performance-enhancing purposes. It is often taken by mouth.

<span class="mw-page-title-main">Trenbolone</span> Anabolic steroid

Trenbolone is an androgen and anabolic steroid (AAS) of the nandrolone group which itself was never marketed. Trenbolone ester prodrugs, including trenbolone acetate and trenbolone hexahydrobenzylcarbonate, are or have been marketed for veterinary and clinical use. Trenbolone acetate is used in veterinary medicine in livestock to increase muscle growth and appetite, while trenbolone hexahydrobenzylcarbonate was formerly used clinically in humans but is now no longer marketed. In addition, although it is not approved for clinical or veterinary use, trenbolone enanthate is sometimes sold on the black market under the nickname Trenabol.

<span class="mw-page-title-main">Aminoglutethimide</span> Group of stereoisomers

Aminoglutethimide (AG), sold under the brand names Elipten, Cytadren, and Orimeten among others, is a medication which has been used in the treatment of seizures, Cushing's syndrome, breast cancer, and prostate cancer, among other indications. It has also been used by bodybuilders, athletes, and other men for muscle-building and performance- and physique-enhancing purposes. AG is taken by mouth three or four times per day.

<span class="mw-page-title-main">Exemestane</span> Breast cancer medication

Exemestane, sold under the brand name Aromasin among others, is a medication used to treat breast cancer. It is a member of the class of antiestrogens known as aromatase inhibitors. Some breast cancers require estrogen to grow. Those cancers have estrogen receptors (ERs), and are called ER-positive. They may also be called estrogen-responsive, hormonally-responsive, or hormone-receptor-positive. Aromatase is an enzyme that synthesizes estrogen. Aromatase inhibitors block the synthesis of estrogen. This lowers the estrogen level, and slows the growth of cancers.

<span class="mw-page-title-main">Testosterone enanthate</span> Chemical compound

Testosterone enanthate is an androgen and anabolic steroid (AAS) medication which is used mainly in the treatment of low testosterone levels in men. It is also used in hormone therapy for transgender men. It is given by injection into muscle or subcutaneously usually once every one to four weeks.

<span class="mw-page-title-main">Danazol</span> Chemical compound

Danazol, sold as Danocrine and other brand names, is a medication used in the treatment of endometriosis, fibrocystic breast disease, hereditary angioedema and other conditions. It is taken by mouth.

<span class="mw-page-title-main">4-Androstene-3,6,17-trione</span> Chemical compound

4-Androstene-3,6,17-trione is a drug or nutritional supplement that may increase the testosterone-estrogen ratio, but has no proven effect on body composition. Its use can be detected in urine.

<span class="mw-page-title-main">Gestrinone</span> Chemical compound

Gestrinone, sold under the brand names Dimetrose and Nemestran among others, is a medication which is used in the treatment of endometriosis. It has also been used to treat other conditions such as uterine fibroids and heavy menstrual bleeding and has been investigated as a method of birth control. Gestrinone is used alone and is not formulated in combination with other medications. It is taken by mouth or in through the vagina.

<span class="mw-page-title-main">Fluoxymesterone</span> Chemical compound

Fluoxymesterone, sold under the brand names Halotestin and Ultandren among others, is an androgen and anabolic steroid (AAS) medication which is used in the treatment of low testosterone levels in men, delayed puberty in boys, breast cancer in women, and anemia. It is taken by mouth.

Hormonal therapy in oncology is hormone therapy for cancer and is one of the major modalities of medical oncology, others being cytotoxic chemotherapy and targeted therapy (biotherapeutics). It involves the manipulation of the endocrine system through exogenous or external administration of specific hormones, particularly steroid hormones, or drugs which inhibit the production or activity of such hormones. Because steroid hormones are powerful drivers of gene expression in certain cancer cells, changing the levels or activity of certain hormones can cause certain cancers to cease growing, or even undergo cell death. Surgical removal of endocrine organs, such as orchiectomy and oophorectomy can also be employed as a form of hormonal therapy.

Antiestrogens, also known as estrogen antagonists or estrogen blockers, are a class of drugs which prevent estrogens like estradiol from mediating their biological effects in the body. They act by blocking the estrogen receptor (ER) and/or inhibiting or suppressing estrogen production. Antiestrogens are one of three types of sex hormone antagonists, the others being antiandrogens and antiprogestogens. Antiestrogens are commonly used to stop steroid hormones, estrogen, from binding to the estrogen receptors leading to the decrease of estrogen levels. Decreased levels of estrogen can lead to complications in sexual development. Antiandrogens are sex hormone antagonists which are able to lower the production and the effects that testosterone can have on female bodies.

<span class="mw-page-title-main">Atamestane</span> Chemical compound

Atamestane, also known as metandroden, as well as 1-methylandrosta-1,4-diene-3,17-dione, is a steroidal aromatase inhibitor that was studied in the treatment of cancer. It blocks the production of estrogen in the body. The drug is selective, competitive, and irreversible in its inhibition of aromatase.

<span class="mw-page-title-main">Testolactone</span> Chemical compound

Testolactone is a non-selective, irreversible, steroidal aromatase inhibitor which is used as an antineoplastic drug to treat advanced-stage breast cancer. The drug was discontinued in 2008 and is no longer available for medical use.

<span class="mw-page-title-main">Epristeride</span> Chemical compound

Epristeride, sold under the brand names Aipuliete and Chuanliu, is a medication which is used in the treatment of enlarged prostate in China. It is taken by mouth.

<span class="mw-page-title-main">Minamestane</span> Chemical compound

Minamestane (INN is a steroidal aromatase inhibitor which was under development by Farmitalia-Carlo Erba as an antineoplastic agent in the mid-1990s but was never marketed.

<span class="mw-page-title-main">Zanoterone</span> Chemical compound

Zanoterone, also known as (5α,17α)-1'-(methylsulfonyl)-1'-H-pregn-20-yno[3,2-c]pyrazol-17-ol, is a steroidal antiandrogen which was never marketed. It was investigated for the treatment of benign prostatic hyperplasia (BPH) but failed to demonstrate sufficient efficacy in phase II clinical trials, and also showed an unacceptable incidence rate and severity of side effects. As such, it was not further developed.

Steroidal aromatase inhibitors are a class of drugs that are mostly used for treating breast cancer in postmenopausal women. High levels of estrogen in breast tissue increases the risk of developing breast cancer and the enzyme aromatase is considered to be a good therapeutic target when treating breast cancer due to it being involved in the final step of estrogen biosynthetic pathway and also its inhibition will not affect production of other steroids. Aromatase Inhibitors are classified into two categories based on their structure, nonsteroidal and steroidal; the latter resemble the structure of androstenedione. Steroidal aromatase inhibitors irreversibly inhibit the enzyme by binding covalently to the binding site of aromatase so the substrate cannot access it.

A steroidogenesis inhibitor, also known as a steroid biosynthesis inhibitor, is a type of drug which inhibits one or more of the enzymes that are involved in the process of steroidogenesis, the biosynthesis of endogenous steroids and steroid hormones. They may inhibit the production of cholesterol and other sterols, sex steroids such as androgens, estrogens, and progestogens, corticosteroids such as glucocorticoids and mineralocorticoids, and neurosteroids. They are used in the treatment of a variety of medical conditions that depend on endogenous steroids.

<span class="mw-page-title-main">Non steroidal aromatase inhibitors</span>

Non-Steroidal Aromatase Inhibitors (NSAIs) are one of two categories of aromatase inhibitors (AIs). AIs are divided into two categories, steroidal aromatase inhibitors and non-steroidal aromatase inhibitors that is based on their mechanism of action and structure. NSAIs are mainly used to treat breast cancer in women. NSAIs binding is a reversible process where NSAIs binds to the aromatase enzyme through non-covalent interactions. When aromatase inhibitors (AIs) are used to treat breast cancer the main target is the aromatase enzyme which is responsible for the high estrogen level.

References

  1. Macdonald F (1997). Dictionary of Pharmacological Agents. CRC Press. p. 1635. ISBN   978-0-412-46630-4 . Retrieved 19 May 2012.
  2. Morton IK, Hall JM (1999). Concise Dictionary of Pharmacological Agents: Properties and Synonyms. Springer. p. 227. ISBN   978-0-7514-0499-9 . Retrieved 20 May 2012.
  3. Lombardi P (June 1995). "The irreversible inhibition of aromatase (oestrogen synthetase) by steroidal compounds". Current Pharmaceutical Design. Bentham Science Publishers. 1: 23–50 (45). doi:10.2174/1381612801666220524190226. S2CID   249298105 . Retrieved 20 May 2012.
  4. Kreider RB, Leutholtz BC, Katch FI, Katch VL (2009). Exercise and Sport Nutrition. Exercise & Sport Nutrition. p. 350. ISBN   978-0-9742965-6-2 . Retrieved 20 May 2012.
  5. 1 2 3 Kelloff GJ, Lubet RA, Lieberman R, et al. (January 1998). "Aromatase inhibitors as potential cancer chemopreventives". Cancer Epidemiology, Biomarkers & Prevention. 7 (1): 65–78. PMID   9456245.
  6. Avendaño C, Menéndez JC (4 June 2008). Medicinal Chemistry of Anticancer Drugs. Elsevier. p. 69. ISBN   978-0-444-52824-7 . Retrieved 20 May 2012.