EM-5854

Last updated
EM-5854
EM-5854.svg
Clinical data
Other names4-Fluoro-17β-hydroxy-17α-[(1-oxidopyridin-1-ium-4-yl)methyl]estra-1,3,5(10)-triene-3-carbonitrile
Drug class Steroidal antiandrogen
Identifiers
  • (8R,9S,13S,14S,17R)-4-fluoro-17-hydroxy-13-methyl-17-[(1-oxidopyridin-1-ium-4-yl)methyl]-7,8,9,11,12,14,15,16-octahydro-6H-cyclopenta[a]phenanthrene-3-carbonitrile
CAS Number
PubChem CID
CompTox Dashboard (EPA)
Chemical and physical data
Formula C25H27FN2O2
Molar mass 406.501 g·mol−1
3D model (JSmol)
  • C[C@]12CC[C@H]3[C@H]([C@@H]1CC[C@]2(CC4=CC=[N+](C=C4)[O-])O)CCC5=C3C=CC(=C5F)C#N
  • InChI=1S/C25H27FN2O2/c1-24-10-6-19-18-3-2-17(15-27)23(26)21(18)5-4-20(19)22(24)7-11-25(24,29)14-16-8-12-28(30)13-9-16/h2-3,8-9,12-13,19-20,22,29H,4-7,10-11,14H2,1H3/t19-,20-,22+,24+,25-/m1/s1
  • Key:YKLVHERADAJQQV-NGQKKBAQSA-N

EM-5854 is a steroidal antiandrogen which was under development by Endoceutics, Inc. (formerly Endorecherche, Inc.) for the treatment of prostate cancer. [1] [2] [3] [4] [5] It was first described in a patent in 2008, and was further characterized in 2012. [2] [4] EM-5854 reached phase I/II clinical trials for the treatment of prostate cancer but development was discontinued in March 2019. [1]

The drug acts as a potent and selective competitive antagonist of the androgen receptor (AR). [4] [5] Unlike other steroidal antiandrogens like cyproterone acetate, but similarly to nonsteroidal antiandrogens like bicalutamide and enzalutamide, EM-5854 is a pure or silent antagonist of the AR and shows no intrinsic partial androgenic activity. [4] EM-5854 and its metabolite EM-5855 show 3.7-fold and 94-fold higher affinity for the human AR than bicalutamide (0.66% and 17% of the RBA Tooltip relative binding affinity of metribolone, respectively, compared to 0.18% for bicalutamide). [4] [5] They also show dramatically increased antiandrogenic potency relative to bicalutamide in in vivo assays. [4] [5] [6] On the basis of the available research, it has been said that EM-5854 may possibly have 70- to 140-fold the antiandrogenic potency of bicalutamide in humans. [4] EM-5854 and EM-5855 show little to no affinity for other steroid hormone receptors including the estrogen, progesterone, and glucocorticoid receptors. [4] EM-5854 bears a cyano phenyl group, the structural motif of the nonsteroidal antiandrogens. [7]

EM-5854 and other AR antagonists at steroid hormone receptors and in AR-dependent cancer cell lines [4]
ActivitySpecifics Bica Tooltip Bicalutamide Flu Tooltip Flutamide OH‑Flu Tooltip Hydroxyflutamide Enza Tooltip EnzalutamideEM‑5854 EM‑5855
AR Tooltip Androgen receptor RBA Tooltip relative binding affinity (%)Human0.18NA0.170.070.6617
   Metri Tooltip Metribolone = 100%Rat0.13NA0.070.020.352.6
Shionogi cells AA Tooltip antiandrogenic activityKi (nM)81NANA1702.00.77
LNCaP cells (PSA Tooltip prostate-specific antigen) AA activity and stim of basal prolif De50 (nM) (Inhib at 10−7 M (%))1750
(6 ± 10)
NANA1380
(−20 ± 3)
127
(36 ± 7)
66
(66 ± 1)
Stim at 10−7 M (%)0 ± 1NANA1 ± 119 ± 129 ± 2
ER Tooltip Estrogen receptor RBA Tooltip relative binding affinity (%)Rat (E2 = 100%)0NA0000
PR Tooltip Progesterone receptor RBA Tooltip relative binding affinity (%)Rat (Prom Tooltip Promegestone = 100%)NDNA0ND0.2ND
GR Tooltip Glucocorticoid receptor RBA Tooltip relative binding affinity (%)Rat (Dexa Tooltip Dexamethasone = 100%)0NA0<0.100

Related Research Articles

<span class="mw-page-title-main">Antiandrogen</span> Class of pharmaceutical drugs

Antiandrogens, also known as androgen antagonists or testosterone blockers, are a class of drugs that prevent androgens like testosterone and dihydrotestosterone (DHT) from mediating their biological effects in the body. They act by blocking the androgen receptor (AR) and/or inhibiting or suppressing androgen production. They can be thought of as the functional opposites of AR agonists, for instance androgens and anabolic steroids (AAS) like testosterone, DHT, and nandrolone and selective androgen receptor modulators (SARMs) like enobosarm. Antiandrogens are one of three types of sex hormone antagonists, the others being antiestrogens and antiprogestogens.

<span class="mw-page-title-main">Bicalutamide</span> Antiandrogen medication

Bicalutamide, sold under the brand name Casodex among others, is an antiandrogen medication that is primarily used to treat prostate cancer. It is typically used together with a gonadotropin-releasing hormone (GnRH) analogue or surgical removal of the testicles to treat metastatic prostate cancer (mPC). To a lesser extent, it is used at high doses for locally advanced prostate cancer (LAPC) as a monotherapy without castration. Bicalutamide was also previously used as monotherapy to treat localized prostate cancer (LPC), but authorization for this use was withdrawn following unfavorable trial findings. Besides prostate cancer, bicalutamide is limitedly used in the treatment of excessive hair growth and scalp hair loss in women, as a puberty blocker and component of feminizing hormone therapy for transgender girls and women, to treat gonadotropin-independent early puberty in boys, and to prevent overly long-lasting erections in men. It is taken by mouth.

<span class="mw-page-title-main">Selective androgen receptor modulator</span> Class of pharmaceutical drugs

Selective androgen receptor modulators (SARMs) are a class of drugs that selectively activate the androgen receptor in specific tissues, promoting muscle and bone growth while having less effect on male reproductive tissues like the prostate gland.

<span class="mw-page-title-main">Enobosarm</span> Investigational selective androgen receptor modulator

Enobosarm, also formerly known as ostarine and by the developmental code names GTx-024, MK-2866, and S-22, is a selective androgen receptor modulator (SARM) which is under development for the treatment of androgen receptor-positive breast cancer in women and for improvement of body composition in people taking GLP-1 receptor agonists like semaglutide. It was also under development for a variety of other indications, including treatment of cachexia, Duchenne muscular dystrophy, muscle atrophy or sarcopenia, and stress urinary incontinence, but development for all other uses has been discontinued. Enobosarm was evaluated for the treatment of muscle wasting related to cancer in late-stage clinical trials, and the drug improved lean body mass in these trials, but it was not effective in improving muscle strength. As a result, enobosarm was not approved and development for this use was terminated. Enobosarm is taken by mouth.

<span class="mw-page-title-main">Andarine</span> Chemical compound

Andarine is a selective androgen receptor modulator (SARM) which was developed by GTX, Inc for the treatment of conditions such as muscle wasting, osteoporosis, and benign prostatic hyperplasia (BPH), using the nonsteroidal antiandrogen bicalutamide as a lead compound. Development of andarine for all indications has been discontinued, in favor of the structurally related and improved compound enobosarm.

The first antiandrogen was discovered in the 1960s. Antiandrogens antagonise the androgen receptor (AR) and thereby block the biological effects of testosterone and dihydrotestosterone (DHT). Antiandrogens are important for men with hormonally responsive diseases like prostate cancer, benign prostatic hyperplasia (BHP), acne, seborrhea, hirsutism and androgen alopecia. Antiandrogens are mainly used for the treatment of prostate diseases. Research from 2010 suggests that ARs could be linked to the disease progression of triple-negative breast cancer and salivary duct carcinoma and that antiandrogens can potentially be used to treat it.

<span class="mw-page-title-main">Hydroxyflutamide</span> Chemical compound

Hydroxyflutamide (HF, OHF) (developmental code name SCH-16423), or 2-hydroxyflutamide, is a nonsteroidal antiandrogen (NSAA) and the major active metabolite of flutamide, which is considered to be a prodrug of hydroxyflutamide as the active form. It has been reported to possess an IC50 of 700 nM for the androgen receptor (AR), which is about 4-fold less than that of bicalutamide.

<span class="mw-page-title-main">RU-58841</span> Chemical compound

RU-58841, also known as PSK-3841 or HMR-3841, is a nonsteroidal antiandrogen (NSAA) which was initially developed in the 1980s by Roussel Uclaf, the French pharmaceutical company from which it received its name. It was formerly under investigation by ProStrakan for potential use as a topical treatment for androgen-dependent conditions including acne, pattern hair loss, and excessive hair growth. The compound is similar in structure to the NSAA RU-58642 but contains a different side-chain. These compounds are similar in chemical structure to nilutamide, which is related to flutamide, bicalutamide, and enzalutamide, all of which are NSAAs similarly. RU-58841 can be synthesized either by building the hydantoin moiety or by aryl coupling to 5,5-dimethylhydantoin.

<span class="mw-page-title-main">Nonsteroidal antiandrogen</span> Antiandrogen with a nonsteroidal chemical structure

A nonsteroidal antiandrogen (NSAA) is an antiandrogen with a nonsteroidal chemical structure. They are typically selective and full or silent antagonists of the androgen receptor (AR) and act by directly blocking the effects of androgens like testosterone and dihydrotestosterone (DHT). NSAAs are used in the treatment of androgen-dependent conditions in men and women. They are the converse of steroidal antiandrogens (SAAs), which are antiandrogens that are steroids and are structurally related to testosterone.

<span class="mw-page-title-main">BOMT</span> Chemical compound

BOMT, also known by its developmental code name Ro 7-2340 and as 6α-bromo-4-oxa-17α-methyl-5α-dihydrotestosterone, is a synthetic steroidal antiandrogen which was first produced in 1970 and was never marketed for medical use. It is the 6α-brominated, 4-oxygenated, and 17α-methylated derivative of the androgen dihydrotestosterone (DHT). Along with benorterone, cyproterone, and flutamide, BOMT was among the earliest antiandrogens to be developed and extensively studied, although it is less well-documented in comparison to the others. BOMT has been investigated clinically in the treatment of benign prostatic hyperplasia, though development for this use did not continue. There was also interest in BOMT for the potential applications of acne, pattern hair loss, and possibly prostate cancer, but it was not developed for these indications either.

<span class="mw-page-title-main">DIMP (antiandrogen)</span> Chemical compound

DIMP, or N-(3,5-dimethyl-4-isoxazolylmethyl)phthalimide, is a nonsteroidal antiandrogen (NSAA) structurally related to thalidomide that was first described in 1973 and was never marketed. Along with flutamide, it was one of the earliest NSAAs to be discovered, and for this reason, has been described as a "classical" NSAA. The drug is a selective, competitive, silent antagonist of the AR, although it is described as an "only relatively weak competitor". Its relative binding affinity for the androgen receptor is about 2.6% of that of metribolone. DIMP possesses no androgenic, estrogenic, progestogenic, or antigonadotropic activity, but it does reverse the antigonadotropic effects of testosterone, indicating that, like other pure AR antagonists, it is progonadotropic.

<span class="mw-page-title-main">Trimethyltrienolone</span> Chemical compound

Trimethyltrienolone (TMT), also known by its developmental code name R-2956 or RU-2956, is an antiandrogen medication which was never introduced for medical use but has been used in scientific research.

<span class="mw-page-title-main">LG-120907</span> Nonsteroidal antiandrogen of the quinoline group

LG-120907 is a nonsteroidal antiandrogen (NSAA) of the quinoline group which was developed by Ligand Pharmaceuticals along with selective androgen receptor modulators (SARMs) like LG-121071 and was never marketed. The drug is a high-affinity antagonist of the androgen receptor (AR) with a Ki value of 26 nM and has been found to inhibit growth of the ventral prostate and seminal vesicles in male rats without increasing circulating levels of luteinizing hormone or testosterone. However, this tissue selectivity has not been assessed in humans. LG-120907 is orally active and shows greater oral potency than the arylpropionamide NSAA flutamide.

5<i>N</i>-Bicalutamide Chemical compound

5N-Bicalutamide, or 5-azabicalutamide, is a highly potent nonsteroidal antiandrogen (NSAA) which was discovered in 2016. It is a structural modification of bicalutamide differing it from it only by the replacement of a carbon atom with a nitrogen atom in one of its phenyl rings. Similarly to bicalutamide, the drug acts as a selective antagonist of the androgen receptor (AR). However, unlike bicalutamide, it is a reversible covalent antagonist and stays bound to the receptor for a far longer amount of time. As a result of this difference, 5N-bicalutamide has markedly improved potency relative to bicalutamide, with approximately 150-fold higher affinity for the AR (Ki = 0.15 nM versus 22.3 nM) and about 20-fold greater functional inhibition (IC50Tooltip Half-maximal inhibitory concentration = 15 nM versus 310 nM) of the AR. Future studies of 5N-bicalutamide in normal and mutated prostate cancer cells are planned or underway and it is anticipated that N-bicalutamide may be able to overcome resistance. to current antiandrogens that are used in the treatment of prostate cancer.

Comparison of the nonsteroidal antiandrogen (NSAA) bicalutamide with other antiandrogens reveals differences between the medications in terms of efficacy, tolerability, safety, and other parameters. Relative to the other first-generation NSAAs, flutamide and nilutamide, bicalutamide shows improved potency, efficacy, tolerability, and safety, and has largely replaced these medications in clinical practice. Compared to the second-generation NSAAs, enzalutamide and apalutamide, bicalutamide has inferior potency and efficacy but similar tolerability and safety and a lower propensity for drug interactions.

<span class="mw-page-title-main">Pharmacology of bicalutamide</span> Pharmaceutical compound

The pharmacology of bicalutamide is the study of the pharmacodynamic and pharmacokinetic properties of the nonsteroidal antiandrogen (NSAA) bicalutamide. In terms of pharmacodynamics, bicalutamide acts as a selective antagonist of the androgen receptor (AR), the biological target of androgens like testosterone and dihydrotestosterone (DHT). It has no capacity to activate the AR. It does not decrease androgen levels and has no other important hormonal activity. The medication has progonadotropic effects due to its AR antagonist activity and can increase androgen, estrogen, and neurosteroid production and levels. This results in a variety of differences of bicalutamide monotherapy compared to surgical and medical castration, such as indirect estrogenic effects and associated benefits like preservation of sexual function and drawbacks like gynecomastia. Bicalutamide can paradoxically stimulate late-stage prostate cancer due to accumulated mutations in the cancer. When used as a monotherapy, bicalutamide can induce breast development in males due to its estrogenic effects. Unlike other kinds of antiandrogens, it may have less adverse effect on the testes and fertility.

<span class="mw-page-title-main">RD-162</span> Chemical compound

RD-162 is a second-generation nonsteroidal antiandrogen (NSAA) which was developed for the treatment of prostate cancer but was never marketed. It acts as a potent and selective silent antagonist of the androgen receptor (AR). The drug is a diarylthiohydantoin derivative. It is closely related to enzalutamide and apalutamide. Both RD-162 and enzalutamide show 5- to 8-fold higher affinity for the AR than the first-generation NSAA bicalutamide, and only 2- to 3-fold lower affinity than dihydrotestosterone (DHT), the major endogenous ligand of the receptor in the prostate gland.

<span class="mw-page-title-main">RU-59063</span> Chemical compound

RU-59063 is a nonsteroidal androgen or selective androgen receptor modulator (SARM) which was first described in 1994 and was never marketed. It was originally thought to be a potent antiandrogen, but subsequent research found that it actually possesses dose-dependent androgenic activity, albeit with lower efficacy than dihydrotestosterone (DHT). The drug is an N-substituted arylthiohydantoin and was derived from the first-generation nonsteroidal antiandrogen (NSAA) nilutamide. The second-generation NSAAs enzalutamide, RD-162, and apalutamide were derived from RU-59063.

<span class="mw-page-title-main">BMS-641988</span> Chemical compound

BMS-641988 is a nonsteroidal antiandrogen which was developed by Bristol-Myers Squibb for the treatment of prostate cancer but was never marketed. It acts as a potent competitive antagonist of the androgen receptor (AR) (Ki = 10 nM; IC50Tooltip half-maximal inhibitory concentration = 56 nM). The drug was found to have 20-fold higher affinity for the AR than bicalutamide in MDA-MB-453 cells, and showed 3- to 7-fold the antiandrogenic activity of bicalutamide in vitro. It may have some weak partial agonist activity at the androgen receptor. BMS-641988 is transformed by CYP3A4 into BMS-570511, and this metabolite is then reduced to BMS-501949 by cytosolic reductases. All three compounds show similar antiandrogenic activity. In addition to its antiandrogenic activity, BMS-641988 shows activity as a negative allosteric modulator of the GABAA receptor, and can produce seizures in animals at sufficiently high doses. It also shows some drug-induced QT prolongation. BMS-641988 reached phase I clinical trials prior to the discontinuation of its development. The clinical development of BMS-641988 was terminated due to the occurrence of a seizure in a patient during a phase I study.

<span class="mw-page-title-main">JNJ-26146900</span> Abandoned prostate cancer drug

JNJ-26146900 is a selective androgen receptor modulator (SARM) which was developed by Johnson & Johnson for the potential treatment of prostate cancer but was never marketed.

References

  1. 1 2 "EM 5854 - AdisInsight".
  2. 1 2 Endorecherche, Inc. Preparation of 17α-substituted steroids as systemic antiandrogens and selective androgen receptor modulators. WO2008124922; 2008 https://patents.google.com/patent/US9284345B2/en
  3. Zhang X, Lanter JC, Sui Z (September 2009). "Recent advances in the development of selective androgen receptor modulators". Expert Opin Ther Pat. 19 (9): 1239–58. doi:10.1517/13543770902994397. PMID   19505196. S2CID   46186955.
  4. 1 2 3 4 5 6 7 8 9 Gauthier S, Martel C, Labrie F (October 2012). "Steroid derivatives as pure antagonists of the androgen receptor". J. Steroid Biochem. Mol. Biol. 132 (1–2): 93–104. doi:10.1016/j.jsbmb.2012.02.006. PMID   22449547. S2CID   28982450.
  5. 1 2 3 4 Cabeza M, Sánchez-Márquez A, Garrido M, Silva A, Bratoeff E (2016). "Recent Advances in Drug Design and Drug Discovery for Androgen- Dependent Diseases". Curr. Med. Chem. 23 (8): 792–815. doi:10.2174/0929867323666160210125642. PMC   5412001 . PMID   26861003.
  6. Salvador JA, Carvalho JF, Neves MA, Silvestre SM, Leitão AJ, Silva MM, Sá e Melo ML (February 2013). "Anticancer steroids: linking natural and semi-synthetic compounds". Nat Prod Rep. 30 (2): 324–74. doi:10.1039/c2np20082a. PMID   23151898.
  7. Fujii S, Kagechika H (June 2019). "Androgen receptor modulators: a review of recent patents and reports (2012-2018)". Expert Opin Ther Pat. 29 (6): 439–453. doi:10.1080/13543776.2019.1618831. PMID   31092069. S2CID   155103197.