ACP-105

Last updated
ACP-105
ACP-105 structure.png
Legal status
Legal status
Identifiers
  • 2-chloro-4-(3-hydroxy-3-methyl-8-azabicyclo[3.2.1]octan-8-yl)-3-methylbenzonitrile
CAS Number
PubChem CID
ChemSpider
ChEMBL
Chemical and physical data
Formula C16H19ClN2O
Molar mass 290.79 g·mol−1
3D model (JSmol)
  • CC1=C(C=CC(=C1Cl)C#N)N2C3CCC2CC(C3)(C)O
  • InChI=1S/C16H19ClN2O/c1-10-14(6-3-11(9-18)15(10)17)19-12-4-5-13(19)8-16(2,20)7-12/h3,6,12-13,20H,4-5,7-8H2,1-2H3
  • Key:OUEODVPKPRQETQ-UHFFFAOYSA-N

ACP-105 is a drug which acts as a selective androgen receptor modulator (SARM). It has been investigated for potential use in the treatment of age-related cognitive decline. [1] [2] [3] [4] The drug has been found to reduce anxiety-like behavior in a mouse model of Alzheimer's disease when administered alone, as well as enhance spatial memory when coadministered with the selective estrogen receptor β agonist AC-186. [3] ACP-105 is an aniline SARM and is related to AC-262536 and vosilasarm (RAD140). [5]

Related Research Articles

A nonsteroidal compound is a drug that is not a steroid nor a steroid derivative. Nonsteroidal anti-inflammatory drugs (NSAIDs) are distinguished from corticosteroids as a class of anti-inflammatory agents.

<span class="mw-page-title-main">Selective androgen receptor modulator</span> Class of pharmaceutical drugs

Selective androgen receptor modulators (SARMs) are a class of drugs that selectively activate the androgen receptor in some tissues to build muscle and bone while having less effect in male reproductive tissues such as the prostate gland.

<span class="mw-page-title-main">Estrogen receptor beta</span> Protein-coding gene in the species Homo sapiens

Estrogen receptor beta (ERβ) also known as NR3A2 is one of two main types of estrogen receptor—a nuclear receptor which is activated by the sex hormone estrogen. In humans ERβ is encoded by the ESR2 gene.

<span class="mw-page-title-main">S-40503</span> Chemical compound

S-40503 is an investigational selective androgen receptor modulator (SARM) developed by the Japanese company Kaken Pharmaceuticals, which was developed for the treatment of osteoporosis. SARMs are a new class of drugs which produce tissue-specific anabolic effects in some tissues such as muscle and bone, but without stimulating androgen receptors in other tissues such as in the prostate gland, thus avoiding side effects such as benign prostatic hypertrophy which can occur following treatment with unselective androgens like testosterone or anabolic steroids.

<span class="mw-page-title-main">LGD-2226</span> Chemical compound

LGD-2226 is an investigational selective androgen receptor modulator (SARM), which is being developed for treatment of muscle wasting and osteoporosis.

<span class="mw-page-title-main">Enobosarm</span> Investigational selective androgen receptor modulator

Enobosarm, also formerly known as ostarine and by the developmental code names GTx-024, MK-2866, and S-22, is a selective androgen receptor modulator (SARM) which is under development for the treatment of androgen receptor-positive breast cancer in women and for improvement of body composition in people taking GLP-1 receptor agonists like semaglutide. It was also under development for a variety of other indications, including treatment of cachexia, Duchenne muscular dystrophy, muscle atrophy or sarcopenia, and stress urinary incontinence, but development for all other uses has been discontinued. Enobosarm was evaluated for the treatment of muscle wasting related to cancer in late-stage clinical trials, and the drug improved lean body mass in these trials, but it was not effective in improving muscle strength. As a result, enobosarm was not approved and development for this use was terminated. Enobosarm is taken by mouth.

<span class="mw-page-title-main">Andarine</span> Chemical compound

Andarine is a selective androgen receptor modulator (SARM) which was developed by GTX, Inc for the treatment of conditions such as muscle wasting, osteoporosis, and benign prostatic hypertrophy (BPH), using the nonsteroidal antiandrogen bicalutamide as a lead compound. Development of andarine for all indications has been discontinued, in favor of the structurally related and improved compound enobosarm.

<span class="mw-page-title-main">AC-262,536</span> Chemical compound

AC-262536 is a drug developed by Acadia Pharmaceuticals which acts as a selective androgen receptor modulator (SARM). Chemically it possesses endo-exo isomerism, with the endo form being the active form. It acts as a partial agonist for the androgen receptor with a Ki of 5 nM, and no significant affinity for any other receptors tested. In animal studies it produced a maximal effect of around 66% of the levator ani muscle weight increase of testosterone, but only around 27% of its maximal effect on prostate gland weight. It is an aniline SARM related to ACP-105 and vosilasarm (RAD140).

<span class="mw-page-title-main">LGD-3303</span> Chemical compound

LGD-3303 is a drug which acts as a selective androgen receptor modulator (SARM), with good oral bioavailability. It is a selective agonist for the androgen receptor, producing functional selectivity with effective dissociation of anabolic and androgenic effects, acting as a partial agonist for androgenic effects, but a full agonist for anabolic effects. It has been investigated as a possible treatment for osteoporosis, and was shown in animal studies to enhance the effectiveness of a bisphosphonate drug.

<span class="mw-page-title-main">Ligandrol</span> Chemical compound

Ligandrol, also known by the developmental code names VK5211 and LGD-4033, is a selective androgen receptor modulator (SARM) which is under development for the treatment of muscle atrophy in people with hip fracture. It was also under development for the treatment of cachexia, hypogonadism, and osteoporosis, but development for these indications was discontinued. Ligandrol has been reported to dose-dependently improve lean body mass and muscle strength in preliminary clinical trials, but is still being developed and has not been approved for medical use. The drug is taken by mouth.

<span class="mw-page-title-main">Nonsteroidal estrogen</span> Class of drugs

A nonsteroidal estrogen is an estrogen with a nonsteroidal chemical structure. The most well-known example is the stilbestrol estrogen diethylstilbestrol (DES). Although nonsteroidal estrogens formerly had an important place in medicine, they have gradually fallen out of favor following the discovery of toxicities associated with high-dose DES starting in the early 1970s, and are now almost never used. On the other hand, virtually all selective estrogen receptor modulators (SERMs) are nonsteroidal, with triphenylethylenes like tamoxifen and clomifene having been derived from DES, and these drugs remain widely used in medicine for the treatment of breast cancer among other indications. In addition to pharmaceutical drugs, many xenoestrogens, including phytoestrogens, mycoestrogens, and synthetic endocrine disruptors like bisphenol A, are nonsteroidal substances with estrogenic activity.

<span class="mw-page-title-main">Vosilasarm</span> Chemical compound

Vosilasarm, also known by the development codes RAD140 and EP0062 and by the black-market name Testolone or Testalone, is a selective androgen receptor modulator (SARM) which is under development for the treatment of hormone-sensitive breast cancer. It is specifically under development for the treatment of androgen receptor-positive, estrogen receptor-negative, HER2-negative advanced breast cancer. Vosilasarm was also previously under development for the treatment of sarcopenia, osteoporosis, and weight loss due to cancer cachexia, but development for these indications was discontinued. The drug is taken by mouth.

<span class="mw-page-title-main">Acetothiolutamide</span> Chemical compound

Acetothiolutamide is a selective androgen receptor modulator (SARM) derived from the nonsteroidal antiandrogen bicalutamide that was described in 2002 and was one of the first SARMs to be discovered and developed. It is a high-affinity, selective ligand of the androgen receptor (AR), where it acts as a full agonist in vitro, and has in vitro potency comparable to that of testosterone. However, in vivo, acetothiolutamide displayed overall negligible androgenic effects, though significant anabolic effects were observed at high doses. In addition, notable antiandrogen effects were observed in castrated male rats treated with testosterone propionate. The discrepancy between the in vitro and in vivo actions of acetothiolutamide was determined to be related to rapid plasma clearance and extensive hepatic metabolism into a variety of metabolites with differing pharmacological activity, including AR partial agonism and antagonism. In accordance with its poor metabolic stability, acetothiolutamide is not orally bioavailable, and shows activity only via injected routes such as subcutaneous and intravenous.

<span class="mw-page-title-main">LG121071</span> Chemical compound

LG121071 is a selective androgen receptor modulator (SARM) developed by Ligand Pharmaceuticals that was first described in 1999 and was the first orally active nonsteroidal androgen to be discovered. It is a tricyclic quinolone derivative, structurally distinct from other nonsteroidal AR agonists like andarine and enobosarm (ostarine). The drug acts as a high-affinity full agonist of the androgen receptor (AR), with a potency and efficacy that is said to be equivalent to that of dihydrotestosterone (DHT). Unlike testosterone, but similarly to DHT, LG121071 and other nonsteroidal androgens cannot be potentiated by 5α-reductase in androgenic tissues, and for this reason, show tissue-selective androgenic effects. In accordance, they are said to possess full anabolic activity with reduced androgenic activity, similarly to anabolic-androgenic steroids.

<span class="mw-page-title-main">Erteberel</span> Chemical compound

Erteberel is a synthetic, nonsteroidal estrogen which acts as a selective ERβ agonist and is under development by Eli Lilly for the treatment of schizophrenia. It is specifically under investigation for the treatment of negative symptoms and cognitive impairment associated with the condition. As of 2015, it is in phase II clinical trials for this indication in the United States. Erteberel was also under investigation for the treatment of benign prostatic hyperplasia and reached phase II clinical studies for this use but failed to improve symptoms in men with the condition and development for this indication was discontinued. The drug has also been proposed as a potential novel treatment for glioblastoma.

<span class="mw-page-title-main">LG-120907</span> Nonsteroidal antiandrogen of the quinoline group

LG-120907 is a nonsteroidal antiandrogen (NSAA) of the quinoline group which was developed by Ligand Pharmaceuticals along with selective androgen receptor modulators (SARMs) like LG-121071 and was never marketed. The drug is a high-affinity antagonist of the androgen receptor (AR) with a Ki value of 26 nM and has been found to inhibit growth of the ventral prostate and seminal vesicles in male rats without increasing circulating levels of luteinizing hormone or testosterone. However, this tissue selectivity has not been assessed in humans. LG-120907 is orally active and shows greater oral potency than the arylpropionamide NSAA flutamide.

<span class="mw-page-title-main">RU-59063</span> Chemical compound

RU-59063 is a nonsteroidal androgen or selective androgen receptor modulator (SARM) which was first described in 1994 and was never marketed. It was originally thought to be a potent antiandrogen, but subsequent research found that it actually possesses dose-dependent androgenic activity, albeit with lower efficacy than dihydrotestosterone (DHT). The drug is an N-substituted arylthiohydantoin and was derived from the first-generation nonsteroidal antiandrogen (NSAA) nilutamide. The second-generation NSAAs enzalutamide, RD-162, and apalutamide were derived from RU-59063.

<span class="mw-page-title-main">GLPG-0492</span> Medication

GLPG-0492 (DT-200) is a drug which acts as a selective androgen receptor modulator (SARM). It has been investigated for the treatment of cachexia and muscular dystrophy.

<span class="mw-page-title-main">PF-06260414</span> Chemical compound

PF-06260414 is a drug which acts as a selective androgen receptor modulator (SARM), and was developed for androgen replacement therapy.

<span class="mw-page-title-main">GSK-4336A</span> Chemical compound

GSK4336A is a drug which acts as a selective androgen receptor modulator (SARM), and was developed for androgen replacement therapy.

References

  1. Schlienger N, Lund BW, Pawlas J, Badalassi F, Bertozzi F, Lewinsky R, et al. (November 2009). "Synthesis, structure-activity relationships, and characterization of novel nonsteroidal and selective androgen receptor modulators". Journal of Medicinal Chemistry. 52 (22): 7186–7191. doi:10.1021/jm901149c. PMID   19856921.
  2. Dayger C, Villasana L, Pfankuch T, Davis M, Raber J (March 2011). "Effects of the SARM ACP-105 on rotorod performance and cued fear conditioning in sham-irradiated and irradiated female mice". Brain Research. 1381: 134–140. doi:10.1016/j.brainres.2010.12.088. PMC   3048897 . PMID   21219889.
  3. 1 2 George S, Petit GH, Gouras GK, Brundin P, Olsson R (December 2013). "Nonsteroidal selective androgen receptor modulators and selective estrogen receptor β agonists moderate cognitive deficits and amyloid-β levels in a mouse model of Alzheimer's disease". ACS Chemical Neuroscience. 4 (12): 1537–1548. doi:10.1021/cn400133s. PMC   3867967 . PMID   24020966.
  4. Cutler C, Viljanto M, Taylor P, Hincks P, Biddle S, Van Eenoo P (October 2021). "Identification of equine in vitro metabolites of seven non-steroidal selective androgen receptor modulators for doping control purposes". Drug Testing and Analysis. 14 (2): 349–370. doi:10.1002/dta.3189. hdl: 1854/LU-8740373 . PMID   34714606. S2CID   240152623.
  5. Zhang X, Sui Z (February 2013). "Deciphering the selective androgen receptor modulators paradigm". Expert Opinion on Drug Discovery. 8 (2): 191–218. doi:10.1517/17460441.2013.741582. PMID   23231475. S2CID   2584722.