Bisphenol A diglycidyl ether

Last updated
Bisphenol A diglycidyl ether
Bisphenol A diglycidyl ether 200.svg
Names
Preferred IUPAC name
5,5-Dimethyl-3,7-dioxa-1,9(2)-bis(oxirana)-4,6(2,4)-dibenzenanonaphane
Other names
Diglycidyl ether of bisphenol A; 2,2-Bis(4-glycidyloxyphenyl)propane; Epoxide A
Identifiers
3D model (JSmol)
AbbreviationsBADGE; DGEBA
ChemSpider
ECHA InfoCard 100.015.294 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 216-823-5
KEGG
MeSH C019273
PubChem CID
UNII
  • InChI=1S/C21H24O4/c1-21(2,15-3-7-17(8-4-15)22-11-19-13-24-19)16-5-9-18(10-6-16)23-12-20-14-25-20/h3-10,19-20H,11-14H2,1-2H3 X mark.svgN
    Key: LCFVJGUPQDGYKZ-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C21H24O4/c1-21(2,15-3-7-17(8-4-15)22-11-19-13-24-19)16-5-9-18(10-6-16)23-12-20-14-25-20/h3-10,19-20H,11-14H2,1-2H3
    Key: LCFVJGUPQDGYKZ-UHFFFAOYAQ
  • CC(C)(C1=CC=C(C=C1)OCC2CO2)C3=CC=C(C=C3)OCC4CO4
Properties
C21H24O4
Molar mass 340.419 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Bisphenol A diglycidyl ether (commonly abbreviated BADGE or DGEBA) is an organic compound and is a liquid epoxy resin. [1] [2] [3] [4] [5] The compound is a colorless viscous liquid (commercial samples can appear pale straw-coloured). [6] [7] It is a key component of many epoxy resin formulations. Addition of further Bisphenol A and a catalyst and heat can produce Bisphenol A glycidyl ether epoxy resins of higher molecular weight that are solid. [8]

Contents

Structure of bisphenol-A diglycidyl ether epoxy resin: n denotes the number of polymerized subunits and is typically in the range from 0 to 25 Epoxy prepolymer chemical structure.png
Structure of bisphenol-A diglycidyl ether epoxy resin: n denotes the number of polymerized subunits and is typically in the range from 0 to 25

Preparation and reactions

It is prepared by O-alkylation of bisphenol A with epichlorohydrin. This reaction mainly affords bisphenol A diglycidyl ether, as well as some oligomer. The degree of polymerization may be as low as 0.1. [9] The epoxide content of such epoxy resins is of interest. This parameter is commonly expressed as the epoxide number, which is the number of epoxide equivalents in 1 kg of resin (Eq./kg), or as the equivalent weight, which is the weight in grams of resin containing 1 mole equivalent of epoxide (g/mol). Since unsymmetrical epoxides are chiral, the bis epoxide consists of three stereoisomers, although these are not separated.

Bisphenol A diglycidyl ether slowly hydrolyzes to 2,2-bis[4(2,3-dihydroxypropoxy)phenyl)propane (bis-HPPP).

Similarly, DGEBA reacts with acrylic acid to give vinyl ester resins. The reaction results in opening of the epoxide ring, generating unsaturated esters at each terminus of the molecule. Such materials are often diluted with styrene and converted to resin.

Epoxy resins are thermosetting polymers, which are crosslinked using hardeners (curing agents). The most common curing agents for epoxy resins are polyamines, aminoamides, and phenolic compounds. [10]

Safety

BADGE is highly reactive and forms a number of species upon exposure to water or HCl and many of these compounds (including BADGE) are suspected endocrine disruptors. [11] Hydrolysis of the ether bonds liberates bisphenol A, which is also strongly suspected of being an endocrine disruptor. [12] [13] From the 1990s onward, concern has been raised over the use of BADGE-based epoxy resins in the lining of some cans for foodstuffs, with the chemical being found to leach into foods. [12] [14] Bisphenol A Diglycidyl ether-based epoxy coatings are extensively used for coating the inside of cans which come into contact with food and are thus food contact materials. The materials and analogues and conjugates have been extensively tested for and analytical methods developed. [15] [16]

See also

Related Research Articles

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

Bis-HPPP (2,2-bis[4(2,3-hydroxypropoxy)phenyl]propane) is an organic compound that is formed when the dental composite material bis-GMA is degraded by salivary esterases. It is also called BADGE·2H2O in reference to it being the hydrolyzed form of BADGE, which is used in the formation of epoxy resins. Structurally, it is a di-ether of bisphenol A.

<span class="mw-page-title-main">Glycidyl methacrylate</span> Chemical compound

Glycidyl methacrylate (GMA) is an ester of methacrylic acid and glycidol. Containing both an epoxide and an acrylate groups, the molecule is bifunctional. It is a common monomer used in the production of epoxy resins. While typical home epoxies contain diglycidyl ether of bisphenol A (DGEBA), glycidyl methacrylate is instead used to provide epoxy functionalization to polyolefins and other acrylate resins. Glycidyl methacrylate is produced by several companies worldwide, including Dow Chemical. It is used to prepare a range of composites.

n-Butyl glycidyl ether is an industrial chemical used in adhesives, sealants, and as a paint or coating additive. It is principally used to reduce the viscosity of epoxy resin systems.

2-Ethylhexyl glycidyl ether is a liquid organic molecule with formula C11H22O2 an industrial chemical used to reduce the viscosity of epoxy resins. These are then used in adhesives, sealants, and paints or coatings. It has the CAS Registry Number of 2461-15-6. It has the IUPAC name of 2-(2-ethylhexoxymethyl)oxirane. It also finds use in other polymer based applications.

<i>o</i>-Cresyl glycidyl ether Chemical compound

o-Cresyl glycidyl ether (ortho-cresyl glycidyl ether, o-CGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether. It has the formula C10H12O2 and the CAS Registry Number 2210-79-9. It is one of a number of glycidyl ethers available commercially that are used to reduce the viscosity of epoxy resins. These are then further used in coatings, sealants, adhesives, composites and elastomers.

Neopentyl glycol diglycidyl ether (NPGDGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has the formula C11H20O4 and the CAS registry number of 17557-23-2. It has two oxirane groups per molecule. Its principle use is in modifying epoxy resins.

1,4-Butanediol diglycidyl ether (B14DODGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction.

1,6-Hexanediol diglycidyl ether is an organic chemical in the glycidyl ether family. It is an aliphatic compound that is a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction whilst flexibilizing. It is REACH registered.

1,4-Cyclohexanedimethanol diglycidyl ether is an organic chemical in the glycidyl ether family. Its formula is C14H24O4 and the IUPAC name is 2-[[4-(oxiran-2-ylmethoxymethyl)cyclohexyl]methoxymethyl]oxirane. It has the CAS number of 14228-73-0 and is REACH registered in Europe. An industrial chemical, a key use is in the reduction of the viscosity of epoxy resin systems functioning as a reactive diluent.

<span class="mw-page-title-main">C12–C14 alcohol glycidyl ether</span> Chemical compound

C12-C14 alcohol glycidyl ether (AGE) is an organic chemical in the glycidyl ether family. It is a mixture of mainly 12 and 14 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 68609-97-2 but the IUPAC name is more complex as it is a mixture and is 2-(dodecoxymethyl)oxirane;2-(tetradecoxymethyl)oxirane;2-(tridecoxymethyl)oxirane. Other names include dodecyl and tetradecyl glycidyl ethers and alkyl (C12-C14) glycidyl ether.

<span class="mw-page-title-main">Trimethylolpropane triglycidyl ether</span> Chemical compound

Trimethylolpropane triglycidyl ether (TMPTGE) is an organic chemical in the glycidyl ether family. It has the formula C15H26O6 and the IUPAC name is 2-[2,2-bis(oxiran-2-ylmethoxymethyl)butoxymethyl]oxirane, and the CAS number 3454-29-3. It also has another CAS number of 30499-70-8 A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Castor oil glycidyl ether</span> Chemical compound

Castor oil glycidyl ether is a liquid organic chemical in the glycidyl ether family. It is sometimes called castor oil triglycidyl ether. It has the theoretical formula C66H116O12. There are two CAS numbers in use, 14228-73-0 and 74398-71-3. The IUPAC name is 2,3-bis[[(E)-12-(oxiran-2-ylmethoxy)octadec-9-enoyl]oxy]propyl (E)-12-(oxiran-2-ylmethoxy)octadec-9-enoate. A key use is acting as a modifier for epoxy resins as a reactive diluent that adds flexibility and improved mechanical properties.

<span class="mw-page-title-main">C12–C13 alcohol glycidyl ether</span> Chemical compound

C12-C13 alcohol glycidyl ether is a mixture of organic chemicals in the glycidyl ether family. It is a mixture of mainly 12 and 13 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 120547-52-6.

<span class="mw-page-title-main">Trimethylolethane triglycidyl ether</span> Chemical compound

Trimethylolethane triglycidyl ether (TMETGE) is an organic chemical in the glycidyl ether family. It has the formula C14H24O6 and the IUPAC name is 2-({2-methyl-3-[(oxiran-2-yl)methoxy]-2-{[(oxiran-2-yl)methoxy]methyl}propoxy}methyl)oxirane. The CAS number is 68460-21-9. A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Poly(propylene glycol) diglycidyl ether</span> Chemical compound

Poly(propylene glycol) diglycidyl ether (PPGDGE) is an organic chemical in the glycidyl ether family. There are a number of variations depending on the starting molecular weight of the polypropylene glycol. They have the formula (C3H6O)n.C6H10O3 and the IUPAC name is Poly[oxy(methyl-1,2-ethanediyl)],a-(2-oxiranylmethyl)-w-(2-oxiranylmethoxy)- A key use is as a modifier for epoxy resins as a reactive diluent and flexibilizer. It is REACH registered.

<span class="mw-page-title-main">Diethylene glycol diglycidyl ether</span> Chemical compound

Diethylene glycol diglycidyl ether (DEGDGE) is an organic chemical in the glycidyl ether family with the formula C10H18O5.. The oxirane functionality makes it useful as a reactive diluent for epoxy resin viscosity reduction.

<span class="mw-page-title-main">Diglycidyl resorcinol ether</span> Chemical compound

Diglycidyl resorcinol ether, also called Resorcinol diglycidyl ether (RDGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether.

<span class="mw-page-title-main">Phenyl glycidyl ether</span> Chemical compound

Phenyl glycidyl ether, is a liquid aromatic organic chemical in the glycidyl ether class of compounds. It has the formula C9H10O2. It has the CAS Registry Number 122-60-1 and the IUPAC name of 2-(phenoxymethyl)oxirane. A key use is in the viscosity reduction of epoxy resin systems. It is REACH registered and on EINECS under the name 2,3-epoxypropyl phenyl ether.

<span class="mw-page-title-main">Diglycidyl aniline</span> Chemical compound

Diglycidyl aniline is an aromatic organic chemical in the glycidyl compound family. It is used to reduce the viscosity of epoxy resin systems. It has the empirical formula C12H15NO2 and the IUPAC name is N,N-bis(oxiran-2-ylmethyl)aniline. The CAS number is 2095-06-9. It is REACH registered in Europe with the EC number 218-259-5. A key use is in the viscosity reduction of epoxy resin systems functioning as a reactive diluent.

References

  1. Ellis, Bryan (1993). Chemistry and Technology of Epoxy Resins. Dordrecht: Springer Netherlands. ISBN   978-94-011-2932-9. OCLC   851368739.
  2. "Bisphenol A Liquid Epoxy Resins | Business & Products". DIC Corporation. Retrieved 2023-01-11.
  3. "Epoxy: A Complete Guide". Copps Industries. Archived from the original on 2023-01-11. Retrieved 2023-01-11.
  4. PubChem. "Bisphenol A diglycidyl ether". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-01-11.
  5. "2,2-Bis(4-glycidyloxyphenyl)propane 1675-54-3 | TCI AMERICA". www.tcichemicals.com. Retrieved 2023-01-11.
  6. Hofer, Arnold; Schneider, Hildegard, and Siegenthaler, Nikolaus (1996) "Epoxy resin mixtures containing advancement catalysts", U.S. patent 5,521,261 .
  7. Pham, Ha Q.; Marks, Maurice J. (2012). "Epoxy Resins". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a09_547.pub2. ISBN   978-3527306732.
  8. Ashcroft, W. R. (1993), Ellis, Bryan (ed.), "Curing agents for epoxy resins", Chemistry and Technology of Epoxy Resins, Dordrecht: Springer Netherlands, pp. 37–71, doi:10.1007/978-94-011-2932-9_2, ISBN   978-94-010-5302-0 , retrieved 2023-01-11
  9. Mark, Herman (16 October 2013). "Epoxy Resins". Encyclopedia of Polymer Science and Technology. ISBN   9780470073698.
  10. Forrest, M.J.: Coatings and Inks for Food Contact Materials, in RAPRA review reports, vol. 16, no. 6 (2005), p.8
  11. Wang, Dongqi; Zhao, Haoduo; Fei, Xunchang; Synder, Shane Allen; Fang, Mingliang; Liu, Min (October 2021). "A comprehensive review on the analytical method, occurrence, transformation and toxicity of a reactive pollutant: BADGE". Environment International. 155: 106701. Bibcode:2021EnInt.15506701W. doi: 10.1016/j.envint.2021.106701 . hdl: 10356/161451 . PMID   34146765.
  12. 1 2 Walfried Rauter, Gerald Dickinger, Rudolf Zihlarz and Josef Lintschinger, "Determination of Bisphenol A diglycidyl ether (BADGE) and its hydrolysis products in canned oily foods from the Austrian market", Z. Lebensm. Unters. Forsch. A 208 (1999) 208–211
  13. "Leitlinie zur hygienischen Beurteilung von organischen Beschichtungen im Kontakt mit Trinkwasser (Beschichtungsleitlinie)" [Guideline for public health evaluation of organic chemical coatings in contact with drinking water (coating guideline)](PDF). www.umweltbundesamt.de (in German). 16 March 2016. Archived from the original (PDF) on 9 January 2017. Retrieved 6 October 2019.
  14. Berdasco, Nancy Anne M.; Waechter, John M. (2012-08-17), Bingham, Eula; Cohrssen, Barbara; Powell, Charles H. (eds.), "Epoxy Compounds: Aromatic Diglycidyl Ethers, Polyglycidyl Ethers, Glycidyl Esters, and Miscellaneous Epoxy Compounds", Patty's Toxicology, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 491–528, doi:10.1002/0471435139.tox083.pub2, ISBN   978-0-471-12547-1 , retrieved 2022-07-28
  15. Lestido-Cardama, Antía; Sendón, Raquel; Rodríguez Bernaldo de Quirós, Ana (2022-11-01). "Tentative identification of BADGE derivatives in epoxy type coatings in a model sample: a beverage can". Journal of Coatings Technology and Research. 19 (6): 1893–1900. doi:10.1007/s11998-022-00662-6. ISSN   1935-3804. S2CID   251912604.
  16. Beszterda, Monika; Tądrowska, Magdalena; Frański, Rafał (2022-11-01). "Multi-detection method for the fast screening of bisphenol A diglycidyl ether conjugates in the can-coating material". Journal of Coatings Technology and Research. 19 (6): 1901–1907. doi:10.1007/s11998-022-00668-0. ISSN   1935-3804. S2CID   252213795.