2-Ethylhexyl glycidyl ether

Last updated
2-Ethylhexyl glycidyl ether
2-ethylhexyl glycidyl ether.svg
Names
IUPAC name
2-(2-Ethylhexoxymethyl)oxirane
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.017.776 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 219-553-6
PubChem CID
UNII
  • InChI=1S/C11H22O2/c1-3-5-6-10(4-2)7-12-8-11-9-13-11/h10-11H,3-9H2,1-2H3
    Key: BBBUAWSVILPJLL-UHFFFAOYSA-N
  • O(CC1OC1)CC(CC)CCCC
Properties
C11H22O2
Molar mass 186.295 g·mol−1
Hazards
GHS labelling: [1]
GHS-pictogram-exclam.svg
Warning
H315, H317, H319, H335
P261, P264, P264+P265, P271, P272, P280, P302+P352, P304+P340, P305+P351+P338, P319, P321, P332+P317, P333+P313, P337+P317, P362+P364, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

2-Ethylhexyl glycidyl ether is a liquid organic molecule with formula C11H22O2 [2] an industrial chemical used to reduce the viscosity of epoxy resins. [3] These are then used in adhesives, sealants, and paints or coatings. It has the CAS Registry Number of 2461-15-6. [4] [5] [6] It has the IUPAC name of 2-(2-ethylhexoxymethyl)oxirane. It also finds use in other polymer based applications. [7]

Contents

Synthesis

2-Ethylhexanol and epichlorohydrin are reacted in the presence of a Lewis acid catalyst in a condensation reaction to form a halohydrin. This is followed by a caustic dehydrochlorination, to form 2-ethylhexyl glycidyl ether. [8] [9] The waste products are water and sodium chloride and excess caustic soda. One of the quality control tests would involve measuring the Epoxy value by determination of the epoxy equivalent weight.

Commercial

The material is produced domestically in the United States and is also produced in other parts of the world. [10] Over 13 million kg were exported from China in 2019. [11]

Uses

As an Epoxy modifier it is classed as an epoxy reactive diluent. [12] As well as being used as an epoxy resin diluent, it maybe further reacted to produce cosmetics. [13] It is also used to synthesize other molecules. [14] The use of the diluent does effect mechanical properties and microstructure of epoxy resins. [15] [16]

Safety

The safety of the product is fairly well understood. It is classed as a skin sensitizer. [17] [18] [19]

See also

Related Research Articles

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

<span class="mw-page-title-main">Cyclohexanedimethanol</span> Chemical compound

Cyclohexanedimethanol (CHDM) is a mixture of isomeric organic compounds with formula C6H10(CH2OH)2. It is a colorless low-melting solid used in the production of polyester resins. Commercial samples consist of a mixture of cis and trans isomers. It is a di-substituted derivative of cyclohexane and is classified as a diol, meaning that it has two OH functional groups. Commercial CHDM typically has a cis/trans ratio of 30:70.

n-Butyl glycidyl ether is an industrial chemical used in adhesives, sealants, and as a paint or coating additive. It is principally used to reduce the viscosity of epoxy resin systems.

<span class="mw-page-title-main">Reactive diluent</span>

Reactive diluents are substances which reduce the viscosity of a lacquer or resin for processing and become part of the lacquer or coating during its subsequent curing via copolymerization. A non-reactive diluent would be a solvent or plasticizer.

Epoxy value derives from the Epoxy equivalent weight (EEW) or Weight Per Epoxide (WPE) and is a measure of the epoxy content of an epoxy resin or epoxy reactive diluent, or glycidyl ether. This is an important parameter as it allows determination of the correct mix ratio of an epoxy system with a curing agent. The epoxide equivalent weight is usually measured first and done by titration. The standard test method is ASTM D1652 though this has been modified by certain states of the USA. The epoxy equivalent weight (EEW) maybe defined as: the number of grams of epoxy resin required to give 1 mole of epoxy groups. The epoxy value is defined as the number of moles of epoxy group per 100g resin.

<i>o</i>-Cresyl glycidyl ether Chemical compound

o-Cresyl glycidyl ether (ortho-cresyl glycidyl ether, o-CGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether. It has the formula C10H12O2 and the CAS Registry Number 2210-79-9. It is one of a number of glycidyl ethers available commercially that are used to reduce the viscosity of epoxy resins. These are then further used in coatings, sealants, adhesives and elastomers.

Neopentyl glycol diglycidyl ether (NPGDGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has the formula C11H20O4 and the CAS registry number of 17557-23-2. It has two oxirane groups per molecule. Its principle use is in modifying epoxy resins.

1,4-Butanediol diglycidyl ether (B14DODGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction.

1,6-Hexanediol diglycidyl ether is an organic chemical in the glycidyl ether family. It is an aliphatic compound that is a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction whilst flexibilizing. It is REACH registered.

1,4-Cyclohexanedimethanol diglycidyl ether is an organic chemical in the glycidyl ether family. Its formula is C14H24O4 and the IUPAC name is 2-[[4-(oxiran-2-ylmethoxymethyl)cyclohexyl]methoxymethyl]oxirane. It has the CAS number of 14228-73-0 and is REACH registered in Europe. An industrial chemical, a key use is in the reduction of the viscosity of epoxy resin systems functioning as a reactive diluent.

<span class="mw-page-title-main">C12–C14 alcohol glycidyl ether</span> Chemical compound

C12-C14 alcohol glycidyl ether (AGE) is an organic chemical in the glycidyl ether family. It is a mixture of mainly 12 and 14 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 68609-97-2 but the IUPAC name is more complex as it is a mixture and is 2-(dodecoxymethyl)oxirane;2-(tetradecoxymethyl)oxirane;2-(tridecoxymethyl)oxirane. Other names include dodecyl and tetradecyl glycidyl ethers and alkyl (C12-C14) glycidyl ether.

<span class="mw-page-title-main">Trimethylolpropane triglycidyl ether</span> Chemical compound

Trimethylolpropane triglycidyl ether (TMPTGE) is an organic chemical in the glycidyl ether family. It has the formula C15H26O6 and the IUPAC name is 2-[2,2-bis(oxiran-2-ylmethoxymethyl)butoxymethyl]oxirane, and the CAS number 3454-29-3. It also has another CAS number of 30499-70-8 A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Castor oil glycidyl ether</span> Chemical compound

Castor oil glycidyl ether is a liquid organic chemical in the glycidyl ether family. It is sometimes called castor oil triglycidyl ether. It has the theoretical formula C66H116O12. There are two CAS numbers in use, 14228-73-0 and 74398-71-3. The IUPAC name is 2,3-bis[[(E)-12-(oxiran-2-ylmethoxy)octadec-9-enoyl]oxy]propyl (E)-12-(oxiran-2-ylmethoxy)octadec-9-enoate. A key use is acting as a modifier for epoxy resins as a reactive diluent that adds flexibility and improved mechanical properties.

<span class="mw-page-title-main">C12–C13 alcohol glycidyl ether</span> Chemical compound

C12-C13 alcohol glycidyl ether is a mixture of organic chemicals in the glycidyl ether family. It is a mixture of mainly 12 and 13 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 120547-52-6.

<span class="mw-page-title-main">Trimethylolethane triglycidyl ether</span> Chemical compound

Trimethylolethane triglycidyl ether (TMETGE) is an organic chemical in the glycidyl ether family. It has the formula C14H24O6 and the IUPAC name is 2-({2-methyl-3-[(oxiran-2-yl)methoxy]-2-{[(oxiran-2-yl)methoxy]methyl}propoxy}methyl)oxirane. The CAS number is 68460-21-9. A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Poly(propylene glycol) diglycidyl ether</span> Chemical compound

Poly(propylene glycol) diglycidyl ether (PPGDGE) is an organic chemical in the glycidyl ether family. There are a number of variations depending on the starting molecular weight of the polypropylene glycol. They have the formula (C3H6O)n.C6H10O3 and the IUPAC name is Poly[oxy(methyl-1,2-ethanediyl)],a-(2-oxiranylmethyl)-w-(2-oxiranylmethoxy)- A key use is as a modifier for epoxy resins as a reactive diluent and flexibilizer. It is REACH registered.

<span class="mw-page-title-main">Diethylene glycol diglycidyl ether</span> Chemical compound

Diethylene glycol diglycidyl ether (DEGDGE) is an organic chemical in the glycidyl ether family with the formula C10H18O5.. The oxirane functionality makes it useful as a reactive diluent for epoxy resin viscosity reduction.

<span class="mw-page-title-main">Diglycidyl resorcinol ether</span> Chemical compound

Diglycidyl resorcinol ether, also called Resorcinol diglycidyl ether (RDGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether.

<span class="mw-page-title-main">Phenyl glycidyl ether</span> Chemical compound

Phenyl glycidyl ether, is a liquid aromatic organic chemical in the glycidyl ether class of compounds. It has the formula C9H10O2. It has the CAS Registry Number 122-60-1 and the IUPAC name of 2-(phenoxymethyl)oxirane. A key use is in the viscosity reduction of epoxy resin systems. It is REACH registered and on EINECS under the name 2,3-epoxypropyl phenyl ether.

<span class="mw-page-title-main">Diglycidyl aniline</span> Chemical compound

Diglycidyl aniline is an aromatic organic chemical in the glycidyl compound family. It is used to reduce the viscosity of epoxy resin systems. It has the empirical formula C12H15NO2 and the IUPAC name is N,N-bis(oxiran-2-ylmethyl)aniline. The CAS number is 2095-06-9. It is REACH registered in Europe with the EC number 218-259-5. A key use is in the viscosity reduction of epoxy resin systems functioning as a reactive diluent.

References

  1. "2-Ethylhexyl glycidyl ether". pubchem.ncbi.nlm.nih.gov. Retrieved 27 March 2022.
  2. "Oxirane, [[(2-ethylhexyl)oxy]methyl]- (CAS 2461-15-6) - Chemical & Physical Properties by Cheméo". www.chemeo.com. Retrieved 2022-03-23.
  3. "TZ3300000 | C11H22O2 | ChemSpider". www.chemspider.com. Retrieved 2022-03-23.
  4. "Sigma Aldrich catalogue 2-ethyl hexyl clycidyl ether" . Retrieved 2022-03-23.
  5. "2-Ethylhexyl glycidyl ether | 2461-15-6". www.chemicalbook.com. Retrieved 2022-03-23.
  6. 2-ethylhexyl glycidyl ether - Wikidata
  7. Deralia, Parveen Kumar; du Poset, Aline Maire; Lund, Anja; Larsson, Anette; Ström, Anna; Westman, Gunnar (2021-04-19). "Oxidation Level and Glycidyl Ether Structure Determine Thermal Processability and Thermomechanical Properties of Arabinoxylan-Derived Thermoplastics". ACS Applied Bio Materials. 4 (4): 3133–3144. doi:10.1021/acsabm.0c01550. PMID   35014401. S2CID   233957334.
  8. "Glycidyl 2-Ethylhexyl Ether 2461-15-6", Sax's Dangerous Properties of Industrial Materials, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004-10-15, doi:10.1002/0471701343.sdp13115, ISBN   0471701343 , retrieved 2022-03-23
  9. SpadŁo, M. & Iwański, L. & Pokorska, Z.. (2004). The effect of catalyst type on the synthesis of 2-ethylhexyl glycidyl ether. Przemysl Chemiczny. 83. 133-136.
  10. Chem, A. A. L. "ME 102". www.aalchem.com. Retrieved 2022-03-23.
  11. "What Is 2-Ethylhexyl Glycidylether, Cas No 2461-15-6 Guide". ECHEMI. Retrieved 2022-03-23.
  12. Monte, Salvatore J. (1998), Pritchard, Geoffrey (ed.), "Diluents and viscosity modifiers for epoxy resins", Plastics Additives: An A-Z reference, Polymer Science and Technology Series, vol. 1, Dordrecht: Springer Netherlands, pp. 211–216, doi:10.1007/978-94-011-5862-6_24, ISBN   978-94-011-5862-6 , retrieved 2022-03-29
  13. Office, European Patent. "European publication server". data.epo.org. Retrieved 2022-03-23.
  14. Urata, Kouichi; Takaishi, Naotake (September 1994). "The alkyl glycidyl ether as synthetic building blocks". Journal of the American Oil Chemists' Society. 71 (9): 1027–1033. doi:10.1007/BF02542274. S2CID   96776835.
  15. Khalina, Morteza; Beheshty, Mohammad Hosain; Salimi, Ali (2019-08-01). "The effect of reactive diluent on mechanical properties and microstructure of epoxy resins". Polymer Bulletin. 76 (8): 3905–3927. doi:10.1007/s00289-018-2577-6. ISSN   1436-2449. S2CID   105389177.
  16. Pastarnokienė, Liepa; Jonikaitė-Švėgždienė, Jūratė; Lapinskaitė, Neringa; Kulbokaitė, Rūta; Bočkuvienė, Alma; Kochanė, Tatjana; Makuška, Ričardas (2023-07-01). "The effect of reactive diluents on curing of epoxy resins and properties of the cured epoxy coatings". Journal of Coatings Technology and Research. 20 (4): 1207–1221. doi:10.1007/s11998-022-00737-4. ISSN   1935-3804. S2CID   256749849.
  17. "Substance Information - ECHA". echa.europa.eu. Retrieved 2022-03-23.
  18. "NIOSHTIC-2 Publications Search - 00188271 - Information profiles on potential occupational hazards: epoxy compounds (non-cyclic)". www.cdc.gov. Retrieved 2022-03-23.
  19. Canada, Environment and Climate Change (2020-08-07). "Screening assessment - Epoxides and Glycidyl Ethers Group". www.canada.ca. Retrieved 2022-03-23.

Further reading

External Websites