Trimethylolpropane triglycidyl ether

Last updated
Trimethylolpropane triglycidyl ether
Trimethylolpropane triglycidyl ether.svg
Names
IUPAC name
2-[2,2-bis(oxiran-2-ylmethoxymethyl)butoxymethyl]oxirane
Other names
1-(2,3-Epoxypropoxy)-2,2-bis((2,3-epoxypropoxy)methyl)butane
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
EC Number
  • 222-384-0
PubChem CID
  • InChI=1S/C15H26O6/c1-2-15(9-16-3-12-6-19-12,10-17-4-13-7-20-13)11-18-5-14-8-21-14/h12-14H,2-11H2,1H3
    Key: QECCQGLIYMMHCR-UHFFFAOYSA-N
  • CCC(COCC1CO1)(COCC2CO2)COCC3CO3
Properties
C15H26O6
Molar mass 302.364 g/mol
Hazards
GHS labelling: [1]
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Danger
H315, H317, H318, H319, H334, H335, H412
P261, P264, P264+P265, P271, P272, P273, P280, P284, P302+P352, P304+P340, P305+P351+P338, P305+P354+P338, P317, P319, P321, P332+P317, P333+P313, P337+P317, P342+P316, P362+P364, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Trimethylolpropane triglycidyl ether (TMPTGE) is an organic chemical in the glycidyl ether family. [2] [3] It has the formula C15H26O6 and the IUPAC name is 2-[2,2-bis(oxiran-2-ylmethoxymethyl)butoxymethyl]oxirane, and the CAS number 3454-29-3. [4] [5] It also has another CAS number of 30499-70-8 [6] [7] A key use is as a modifier for epoxy resins as a reactive diluent. [8]

Contents

Alternative names

Manufacture

Trimethylolpropane and epichlorohydrin are reacted with a Lewis acid catalyst to form a halohydrin. The next step is dehydrochlorination with sodium hydroxide. This forms the triglycidyl ether. [9] [10]

Uses

As the molecule has 3 oxirane functionalities, a key use is modifying and reducing the viscosity of epoxy resins. [11] These reactive diluent modified epoxy resins may then be further formulated into CASE applications: Coatings, [12] Adhesives, [13] Sealants, [14] Elastomers. The use of the diluent does effect mechanical properties and microstructure of epoxy resins. [15] [16] It produces epoxy coatings with high impact resistance [17] Polymer systems with shape memory may also be produced with this particular molecule. [18] Fluoropolymers have also been produced with the material via a photoinitiated mechanism. [19] Production of biocompatible materials is also possible. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

<span class="mw-page-title-main">Bisphenol A diglycidyl ether</span> Chemical compound

Bisphenol A diglycidyl ether is an organic compound and is a liquid epoxy resin. The compound is a colorless viscous liquid. It is a key component of many epoxy resin formulations. Addition of further Bisphenol A and a catalyst and heat can produce Bisphenol A glycidyl ether epoxy resins of higher molecular weight that are solid.

n-Butyl glycidyl ether is an industrial chemical used in adhesives, sealants, and as a paint or coating additive. It is principally used to reduce the viscosity of epoxy resin systems.

<span class="mw-page-title-main">Reactive diluent</span>

Reactive diluents are substances which reduce the viscosity of a lacquer or resin for processing and become part of the lacquer or coating during its subsequent curing via copolymerization. A non-reactive diluent would be a solvent or plasticizer.

Epoxy value derives from the Epoxy equivalent weight (EEW) or Weight Per Epoxide (WPE) and is a measure of the epoxy content of an epoxy resin or epoxy reactive diluent, or glycidyl ether. This is an important parameter as it allows determination of the correct mix ratio of an epoxy system with a curing agent. The epoxide equivalent weight is usually measured first and done by titration. The standard test method is ASTM D1652 though this has been modified by certain states of the USA. The epoxy equivalent weight (EEW) maybe defined as: the number of grams of epoxy resin required to give 1 mole of epoxy groups. The epoxy value is defined as the number of moles of epoxy group per 100g resin.

2-Ethylhexyl glycidyl ether is a liquid organic molecule with formula C11H22O2 an industrial chemical used to reduce the viscosity of epoxy resins. These are then used in adhesives, sealants, and paints or coatings. It has the CAS Registry Number of 2461-15-6. It has the IUPAC name of 2-(2-ethylhexoxymethyl)oxirane. It also finds use in other polymer based applications.

<i>o</i>-Cresyl glycidyl ether Chemical compound

o-Cresyl glycidyl ether (ortho-cresyl glycidyl ether, o-CGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether. It has the formula C10H12O2 and the CAS Registry Number 2210-79-9. It is one of a number of glycidyl ethers available commercially that are used to reduce the viscosity of epoxy resins. These are then further used in coatings, sealants, adhesives and elastomers.

Neopentyl glycol diglycidyl ether (NPGDGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has the formula C11H20O4 and the CAS registry number of 17557-23-2. It has two oxirane groups per molecule. Its principle use is in modifying epoxy resins.

1,4-Butanediol diglycidyl ether (B14DODGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction.

1,6-Hexanediol diglycidyl ether is an organic chemical in the glycidyl ether family. It is an aliphatic compound that is a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction whilst flexibilizing. It is REACH registered.

1,4-Cyclohexanedimethanol diglycidyl ether is an organic chemical in the glycidyl ether family. It has the formula C14H24O4 and the IUPAC name is 2-[[4-(oxiran-2-ylmethoxymethyl)cyclohexyl]methoxymethyl]oxirane, and the CAS number 14228-73-0. It is It is REACH registered in Europe. It is an industrial chemical and a key use is in the reduction of viscosity of epoxy resin systems functioning as a reactive diluent.

<span class="mw-page-title-main">C12–C14 alcohol glycidyl ether</span> Chemical compound

C12-C14 alcohol glycidyl ether (AGE) is an organic chemical in the glycidyl ether family. It is a mixture of mainly 12 and 14 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 68609-97-2 but the IUPAC name is more complex as it is a mixture and is 2-(dodecoxymethyl)oxirane;2-(tetradecoxymethyl)oxirane;2-(tridecoxymethyl)oxirane. Other names include dodecyl and tetradecyl glycidyl ethers and alkyl (C12-C14) glycidyl ether.

<span class="mw-page-title-main">Castor oil glycidyl ether</span> Chemical compound

Castor oil glycidyl ether is a liquid organic chemical in the glycidyl ether family. It is sometimes called castor oil triglycidyl ether. It has the theoretical formula C66H116O12 and the CAS number 14228-73-0. The IUPAC name is 2,3-bis[12-(oxiran-2-ylmethoxy)octadec-9-enoyloxy]propyl 12-(oxiran-2-ylmethoxy)octadec-9-enoate. A key use is acting as a modifier for epoxy resins as a reactive diluent that adds flexibility and improved mechanical properties.

<span class="mw-page-title-main">C12–C13 alcohol glycidyl ether</span> Chemical compound

C12-C13 alcohol glycidyl ether is a mixture of organic chemicals in the glycidyl ether family. It is a mixture of mainly 12 and 13 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 120547-52-6.

<span class="mw-page-title-main">Trimethylolethane triglycidyl ether</span> Chemical compound

Trimethylolethane triglycidyl ether (TMETGE) is an organic chemical in the glycidyl ether family. It has the formula C14H24O6 and the IUPAC name is 2-({2-methyl-3-[(oxiran-2-yl)methoxy]-2-{[(oxiran-2-yl)methoxy]methyl}propoxy}methyl)oxirane. The CAS number is 68460-21-9. A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Poly(propylene glycol) diglycidyl ether</span> Chemical compound

Poly(propylene glycol) diglycidyl ether (PPGDGE) is an organic chemical in the glycidyl ether family. There are a number of variations depending on the starting molecular weight of the polypropylene glycol. They have the formula (C3H6O)n.C6H10O3 and the IUPAC name is Poly[oxy(methyl-1,2-ethanediyl)],a-(2-oxiranylmethyl)-w-(2-oxiranylmethoxy)- A key use is as a modifier for epoxy resins as a reactive diluent and flexibilizer. It is REACH registered.

<span class="mw-page-title-main">Diethylene glycol diglycidyl ether</span> Chemical compound

Diethylene glycol diglycidyl ether (DEGDGE) is an organic chemical in the glycidyl ether family with the formula C10H18O5.. The oxirane functionality makes it useful as a reactive diluent for epoxy resin viscosity reduction.

<span class="mw-page-title-main">Diglycidyl resorcinol ether</span> Chemical compound

Diglycidyl resorcinol ether, also called Resorcinol diglycidyl ether (RDGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether.

<span class="mw-page-title-main">Phenyl glycidyl ether</span> Chemical compound

Phenyl glycidyl ether, is a liquid aromatic organic chemical in the glycidyl ether class of compounds. It has the formula C9H10O2. It has the CAS Registry Number 122-60-1 and the IUPAC name of 2-(phenoxymethyl)oxirane. A key use is in the viscosity reduction of epoxy resin systems. It is REACH registered and on EINECS under the name 2,3-epoxypropyl phenyl ether.

<span class="mw-page-title-main">Diglycidyl aniline</span> Chemical compound

Diglycidyl aniline is an aromatic organic chemical in the glycidyl compound family. It is used to reduce the viscosity of epoxy resin systems. It has the empirical formula C12H15NO2 and the IUPAC name is N,N-bis(oxiran-2-ylmethyl)aniline. The CAS number is 2095-06-9. It is REACH registered in Europe with the EC number 218-259-5. A key use is in the viscosity reduction of epoxy resin systems functioning as a reactive diluent.

References

  1. "1-(2,3-Epoxypropoxy)-2,2-bis[(2,3-epoxypropoxy)methyl]butane". pubchem.ncbi.nlm.nih.gov. Retrieved 13 April 2022.
  2. PubChem. "1-(2,3-Epoxypropoxy)-2,2-bis[(2,3-epoxypropoxy)methyl]butane". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-04-11.
  3. "2-({2,2-Bis[(2-oxiranylmethoxy)methyl]butoxy}methyl)oxirane | C15H26O6 | ChemSpider". www.chemspider.com. Retrieved 2022-04-12.
  4. "CAS Common Chemistry". commonchemistry.cas.org. Retrieved 2022-04-12.
  5. "Trimethylolpropane triglycidyl ether, CAS Number: 3454-29-3". www.chemindustry.com. Retrieved 2022-04-12.
  6. "Substance Information - ECHA". echa.europa.eu. Retrieved 2022-04-12.
  7. "Trimethylolpropane triglycidyl ether". www.carbosynth.com. Retrieved 2022-04-12.
  8. Jagtap, Ameya Rajendra; More, Aarti (2022-08-01). "Developments in reactive diluents: a review". Polymer Bulletin. 79 (8): 5667–5708. doi:10.1007/s00289-021-03808-5. ISSN   1436-2449. S2CID   235678040.
  9. Crivello, James V. (2006). "Design and synthesis of multifunctional glycidyl ethers that undergo frontal polymerization". Journal of Polymer Science Part A: Polymer Chemistry. 44 (21): 6435–6448. Bibcode:2006JPoSA..44.6435C. doi:10.1002/pola.21761. ISSN   0887-624X.
  10. US 5162547,Roth, Martin; Wolleb, Heinz& Truffer, Marc-Andre,"Process for the preparation of glycidyl ethers",published 1992-11-10, assigned to Ciba-Geigy Corp.
  11. Monte, Salvatore J. (1998), Pritchard, Geoffrey (ed.), "Diluents and viscosity modifiers for epoxy resins", Plastics Additives: An A-Z reference, Polymer Science and Technology Series, Dordrecht: Springer Netherlands, vol. 1, pp. 211–216, doi:10.1007/978-94-011-5862-6_24, ISBN   978-94-011-5862-6, archived from the original on 2022-04-11, retrieved 2022-03-29
  12. WOapplication 2019238867,Bevinakatti, Hanamanthsa&Islam, Mojahedul,"Herbicidal formulations comprising glyphosate and cote-based adjuvants",published 2019-12-19, assigned to Nouryon Chemicals International BV
  13. Hao, Xiu; Fan, Dong-Bin (2018-12-17). "Preparation and characterization of epoxy-crosslinked soy protein adhesive". Journal of Adhesion Science and Technology. 32 (24): 2682–2692. doi:10.1080/01694243.2018.1517488. ISSN   0169-4243. S2CID   105550538.
  14. "14228-73-0 | CAS DataBase". www.chemicalbook.com. Archived from the original on 2022-04-11. Retrieved 2022-04-11.
  15. Pastarnokienė, Liepa; Jonikaitė-Švėgždienė, Jūratė; Lapinskaitė, Neringa; Kulbokaitė, Rūta; Bočkuvienė, Alma; Kochanė, Tatjana; Makuška, Ričardas (2023-07-01). "The effect of reactive diluents on curing of epoxy resins and properties of the cured epoxy coatings". Journal of Coatings Technology and Research. 20 (4): 1207–1221. doi:10.1007/s11998-022-00737-4. ISSN   1935-3804.
  16. Khalina, Morteza; Beheshty, Mohammad Hosain; Salimi, Ali (2019-08-01). "The effect of reactive diluent on mechanical properties and microstructure of epoxy resins". Polymer Bulletin. 76 (8): 3905–3927. doi:10.1007/s00289-018-2577-6. ISSN   1436-2449. S2CID   105389177.
  17. US 8062468,Finter, Jürgen; Kramer, Andreas& Schulenburg, Jan Olafet al.,"Low-temperature impact resistant thermosetting epoxide resin compositions with solid epoxide resins",published 2011-11-22, assigned to Sika Technology AG
  18. Santiago, David; Guzmán, Dailyn; Ferrando, Francesc; Serra, Àngels; De la Flor, Silvia (March 2020). "Bio-Based Epoxy Shape-Memory Thermosets from Triglycidyl Phloroglucinol". Polymers. 12 (3): 542. doi: 10.3390/polym12030542 . ISSN   2073-4360. PMC   7182903 . PMID   32131508.
  19. Trusiano, Giuseppe; Vitale, Alessandra; Bonneaud, Céline; Pugliese, Diego; Dalle Vacche, Sara; Joly-Duhamel, Christine; Friesen, Chadron M.; Bongiovanni, Roberta (2021-03-01). "Vinyl ethers and epoxides photoinduced copolymerization with perfluoropolyalkylether monomers". Colloid and Polymer Science. 299 (3): 509–521. doi:10.1007/s00396-020-04723-3. ISSN   1435-1536. PMC   7952294 . PMID   33785978.
  20. "Journal of Electrochemical Science and Technology". www.jecst.org. Retrieved 2022-04-12.

Further reading

External websites