Diglycidyl resorcinol ether

Last updated
Diglycidyl resorcinol ether
Resorcinol diglycidyl ether.svg
Names
IUPAC name
2-[[3-(oxiran-2-ylmethoxy)phenoxy]methyl]oxirane
Other names
1,3-Bis(2,3-epoxypropoxy)benzene; 1,3-Diglycidyloxybenzene; 2,2'-(1,3-Phenylenebis(oxymethylene))bisoxirane; Araldite ERE 1359; m-bis(2,3-epoxypropoxy)-Benzene ; Diglycidyl ether of resorcinol; Diglycidylresorcinol ether; m-Bis(2,3-epoxypropoxy)benzene; m-Bis(glycidyloxy)benzene; Resorcinol bis(2,3-epoxypropyl) ether; Resorcinol diglycidyl ether; Oxirane, 2,2'-(1,3-phenylenebis(oxymethylene))bis-
Identifiers
3D model (JSmol)
AbbreviationsDGRE
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.002.716 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 202-987-5
KEGG
PubChem CID
RTECS number
  • VH1050000
UNII
UN number 2811
  • InChI=1S/C12H14O4/c1-2-9(13-5-11-7-15-11)4-10(3-1)14-6-12-8-16-12/h1-4,11-12H,5-8H2
    Key: WPYCRFCQABTEKC-UHFFFAOYSA-N
  • C1C(O1)COC2=CC(=CC=C2)OCC3CO3
Properties
C12H14O4
Molar mass 222.239 g/mol
Density 1.21
Melting point 32–33 °C (90–91 °F; 305–306 K)
Hazards
GHS labelling: [1]
GHS-pictogram-skull.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Danger
H302, H311, H315, H317, H319, H341, H350, H412
P203, P261, P264, P264+P265, P270, P272, P273, P280, P281, P301+P317, P302+P352, P305+P351+P338, P316, P318, P321, P330, P332+P317, P333+P313, P337+P317, P361+P364, P362+P364, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Diglycidyl resorcinol ether, also called Resorcinol diglycidyl ether (RDGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether. [2] [3]

Contents

The formula is C12H14O4 [4] and the CAS Registry Number 101-90-6. [5] It is one of a number of glycidyl ethers available commercially that are used to reduce the viscosity of epoxy resins. [6] These are then further used in coatings, sealants, adhesives and elastomers. [7] It has the CAS Registry Number 101-90-6. [8] It has the IUPAC name 2-[[3-(oxiran-2-ylmethoxy)phenoxy]methyl]oxirane and is registered on TSCA (Toxic Substances Control Act of 1976) as Oxirane, 2,2'-[1,3-phenylenebis(oxymethylene)]bis-. [9] It is REACH registered and on EINECS. [10]

Synonyms

Synthesis

Resorcinol and epichlorohydrin are reacted in the presence of a base and not a Lewis acid catalyst as normal with glycidyl ethers. A halohydrin is formed. This is followed by washing with sodium hydroxide in dehydrochlorination step. This forms Resorcinol diglycidyl ether. [13] The waste products are water and sodium chloride and excess caustic soda. One of the quality control tests would involve measuring the Epoxy value by determination of the epoxy equivalent weight.

Uses

The material has two oxirane groups and is thus used mainly in epoxy resins systems as a reactive diluent and modifier. [14] [15] [16] It has found use as an additive for bonding resin systems [17] and also as a modifier for phenolic resins [18] Despite the toxicity it generally gives excellent properties and so there are military applications. [19] The use of the diluent does effect mechanical properties and microstructure of epoxy resins. However, this diluent is one of the best for not reducing properties too much. [20] [21]

Toxicology

It is classed as IARC group 2B by the International Agency for Research on Cancer. The toxicology has been studied for a long time and is fairly well understood. [22] [23]

See also

Related Research Articles

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

<span class="mw-page-title-main">Bisphenol A diglycidyl ether</span> Chemical compound

Bisphenol A diglycidyl ether is an organic compound and is a liquid epoxy resin. The compound is a colorless viscous liquid. It is a key component of many epoxy resin formulations. Addition of further Bisphenol A and a catalyst and heat can produce Bisphenol A glycidyl ether epoxy resins of higher molecular weight that are solid.

Diglycidyl ethers are chemical compounds used as a reactive diluents for epoxy resin. Other uses include treating textiles and stabilizing chlorinated organic compounds. Diglycidyl ether itself is extremely toxic, and can prove fatal or cause permanent damage if inhaled or consumed orally. As a class of compounds, there are a number of them available commercially with much lower toxicity profiles. One such example is epoxy resin itself Bisphenol A diglycidyl ether

n-Butyl glycidyl ether is an industrial chemical used in adhesives, sealants, and as a paint or coating additive. It is principally used to reduce the viscosity of epoxy resin systems.

Epoxy value derives from the Epoxy equivalent weight (EEW) or Weight Per Epoxide (WPE) and is a measure of the epoxy content of an epoxy resin or epoxy reactive diluent, or glycidyl ether. This is an important parameter as it allows determination of the correct mix ratio of an epoxy system with a curing agent. The epoxide equivalent weight is usually measured first and done by titration. The standard test method is ASTM D1652 though this has been modified by certain states of the USA. The epoxy equivalent weight (EEW) maybe defined as: the number of grams of epoxy resin required to give 1 mole of epoxy groups. The epoxy value is defined as the number of moles of epoxy group per 100g resin.

2-Ethylhexyl glycidyl ether is a liquid organic molecule with formula C11H22O2 an industrial chemical used to reduce the viscosity of epoxy resins. These are then used in adhesives, sealants, and paints or coatings. It has the CAS Registry Number of 2461-15-6. It has the IUPAC name of 2-(2-ethylhexoxymethyl)oxirane. It also finds use in other polymer based applications.

<i>o</i>-Cresyl glycidyl ether Chemical compound

o-Cresyl glycidyl ether (ortho-cresyl glycidyl ether, o-CGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether. It has the formula C10H12O2 and the CAS Registry Number 2210-79-9. It is one of a number of glycidyl ethers available commercially that are used to reduce the viscosity of epoxy resins. These are then further used in coatings, sealants, adhesives and elastomers.

Neopentyl glycol diglycidyl ether (NPGDGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has the formula C11H20O4 and the CAS registry number of 17557-23-2. It has two oxirane groups per molecule. Its principle use is in modifying epoxy resins.

1,4-Butanediol diglycidyl ether (B14DODGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction.

1,6-Hexanediol diglycidyl ether is an organic chemical in the glycidyl ether family. It is an aliphatic compound that is a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction whilst flexibilizing. It is REACH registered.

1,4-Cyclohexanedimethanol diglycidyl ether is an organic chemical in the glycidyl ether family. It has the formula C14H24O4 and the IUPAC name is 2-[[4-(oxiran-2-ylmethoxymethyl)cyclohexyl]methoxymethyl]oxirane, and the CAS number 14228-73-0. It is It is REACH registered in Europe. It is an industrial chemical and a key use is in the reduction of viscosity of epoxy resin systems functioning as a reactive diluent.

<span class="mw-page-title-main">C12–C14 alcohol glycidyl ether</span> Chemical compound

C12-C14 alcohol glycidyl ether (AGE) is an organic chemical in the glycidyl ether family. It is a mixture of mainly 12 and 14 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 68609-97-2 but the IUPAC name is more complex as it is a mixture and is 2-(dodecoxymethyl)oxirane;2-(tetradecoxymethyl)oxirane;2-(tridecoxymethyl)oxirane. Other names include dodecyl and tetradecyl glycidyl ethers and alkyl (C12-C14) glycidyl ether.

<span class="mw-page-title-main">Trimethylolpropane triglycidyl ether</span> Chemical compound

Trimethylolpropane triglycidyl ether (TMPTGE) is an organic chemical in the glycidyl ether family. It has the formula C15H26O6 and the IUPAC name is 2-[2,2-bis(oxiran-2-ylmethoxymethyl)butoxymethyl]oxirane, and the CAS number 3454-29-3. It also has another CAS number of 30499-70-8 A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Castor oil glycidyl ether</span> Chemical compound

Castor oil glycidyl ether is a liquid organic chemical in the glycidyl ether family. It is sometimes called castor oil triglycidyl ether. It has the theoretical formula C66H116O12 and the CAS number 14228-73-0. The IUPAC name is 2,3-bis[12-(oxiran-2-ylmethoxy)octadec-9-enoyloxy]propyl 12-(oxiran-2-ylmethoxy)octadec-9-enoate. A key use is acting as a modifier for epoxy resins as a reactive diluent that adds flexibility and improved mechanical properties.

<span class="mw-page-title-main">C12–C13 alcohol glycidyl ether</span> Chemical compound

C12-C13 alcohol glycidyl ether is a mixture of organic chemicals in the glycidyl ether family. It is a mixture of mainly 12 and 13 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 120547-52-6.

<span class="mw-page-title-main">Trimethylolethane triglycidyl ether</span> Chemical compound

Trimethylolethane triglycidyl ether (TMETGE) is an organic chemical in the glycidyl ether family. It has the formula C14H24O6 and the IUPAC name is 2-({2-methyl-3-[(oxiran-2-yl)methoxy]-2-{[(oxiran-2-yl)methoxy]methyl}propoxy}methyl)oxirane. The CAS number is 68460-21-9. A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Poly(propylene glycol) diglycidyl ether</span> Chemical compound

Poly(propylene glycol) diglycidyl ether (PPGDGE) is an organic chemical in the glycidyl ether family. There are a number of variations depending on the starting molecular weight of the polypropylene glycol. They have the formula (C3H6O)n.C6H10O3 and the IUPAC name is Poly[oxy(methyl-1,2-ethanediyl)],a-(2-oxiranylmethyl)-w-(2-oxiranylmethoxy)- A key use is as a modifier for epoxy resins as a reactive diluent and flexibilizer. It is REACH registered.

<span class="mw-page-title-main">Diethylene glycol diglycidyl ether</span> Chemical compound

Diethylene glycol diglycidyl ether (DEGDGE) is an organic chemical in the glycidyl ether family with the formula C10H18O5.. The oxirane functionality makes it useful as a reactive diluent for epoxy resin viscosity reduction.

<span class="mw-page-title-main">Phenyl glycidyl ether</span> Chemical compound

Phenyl glycidyl ether, is a liquid aromatic organic chemical in the glycidyl ether class of compounds. It has the formula C9H10O2. It has the CAS Registry Number 122-60-1 and the IUPAC name of 2-(phenoxymethyl)oxirane. A key use is in the viscosity reduction of epoxy resin systems. It is REACH registered and on EINECS under the name 2,3-epoxypropyl phenyl ether.

<span class="mw-page-title-main">Diglycidyl aniline</span> Chemical compound

Diglycidyl aniline is an aromatic organic chemical in the glycidyl compound family. It is used to reduce the viscosity of epoxy resin systems. It has the empirical formula C12H15NO2 and the IUPAC name is N,N-bis(oxiran-2-ylmethyl)aniline. The CAS number is 2095-06-9. It is REACH registered in Europe with the EC number 218-259-5. A key use is in the viscosity reduction of epoxy resin systems functioning as a reactive diluent.

References

  1. "Diglycidyl resorcinol ether". pubchem.ncbi.nlm.nih.gov. Retrieved 27 May 2022.
  2. "Resorcinol diglycidyl ether | C12H14O4 | ChemSpider". www.chemspider.com. Retrieved 2022-05-25.
  3. "NCI Thesaurus". ncithesaurus.nci.nih.gov. Retrieved 2022-05-25.
  4. "Resorcinol diglycidyl ether". www.chemsrc.com. Retrieved 2022-05-25.
  5. Inc, Abt Associates. "Toxics Release Inventory (TRI) GuideME". ordspub.epa.gov. Retrieved 2022-05-25.{{cite web}}: |last= has generic name (help)
  6. "Resorcinol diglycidyl ether | CAS 101-90-6". www.scbt.com. Retrieved 2022-05-25.
  7. Howarth G.A "Synthesis of a legislation compliant corrosion protection coating system based on urethane, oxazolidine and waterborne epoxy technology" pages 23,24,39 Master of Science Thesis April 1997 Imperial College London
  8. PubChem. "Diglycidyl resorcinol ether". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-05-27.
  9. "New Jersey Resorcinol Diglycidyl Ether Hazardous Substance Sheet" (PDF). New Jersey government.
  10. "Substance Information - ECHA". echa.europa.eu. Retrieved 2022-05-27.
  11. "Oxirane, 2,2'-[1,3-phenylenebis(oxymethylene)]bis-". webbook.nist.gov. Retrieved 2022-05-25.
  12. PubChem. "Hazardous Substances Data Bank (HSDB) : 4166". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-05-25.
  13. Crivello, James V. (2006). "Design and synthesis of multifunctional glycidyl ethers that undergo frontal polymerization". Journal of Polymer Science Part A: Polymer Chemistry. 44 (21): 6435–6448. Bibcode:2006JPoSA..44.6435C. doi:10.1002/pola.21761. ISSN   0887-624X.
  14. Jagtap, Ameya Rajendra; More, Aarti (2022-08-01). "Developments in reactive diluents: a review". Polymer Bulletin. 79 (8): 5667–5708. doi:10.1007/s00289-021-03808-5. ISSN   1436-2449. S2CID   235678040.
  15. Sorokin, V. P.; Bobylev, V. A.; Eselev, A. D. (2007-09-01). "Epoxy resins based on resorcinol and its derivatives". Polymer Science Series C. 49 (3): 272–275. doi:10.1134/S1811238207030149. ISSN   1555-614X. S2CID   94228644.
  16. "Diglycidyl Resorcinol Ether - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2022-05-25.
  17. WOapplication 2021124125,Zafar, Ashar; Pham, Huynh Tram Anh& Hägg, Katarinaet al.,"Process for the preparation of a bonding resin",published 2021-06-24, assigned to Stora Enso Oyj
  18. US 11161976,Goodwin, Kimberly; Viswanathan, Ganapathy S.& Peace, Scottet al.,"Phenolic epoxy system",published 2021-11-02, assigned to Hexion Vad LLC
  19. Booth, Hubert J. (1973-07-26). "Synthesis of Epoxy Resins for Property-Structure Studies". Archived from the original on May 14, 2021.{{cite journal}}: Cite journal requires |journal= (help)
  20. Pastarnokienė, Liepa; Jonikaitė-Švėgždienė, Jūratė; Lapinskaitė, Neringa; Kulbokaitė, Rūta; Bočkuvienė, Alma; Kochanė, Tatjana; Makuška, Ričardas (2023-07-01). "The effect of reactive diluents on curing of epoxy resins and properties of the cured epoxy coatings". Journal of Coatings Technology and Research. 20 (4): 1207–1221. doi:10.1007/s11998-022-00737-4. ISSN   1935-3804.
  21. Khalina, Morteza; Beheshty, Mohammad Hosain; Salimi, Ali (2019-08-01). "The effect of reactive diluent on mechanical properties and microstructure of epoxy resins". Polymer Bulletin. 76 (8): 3905–3927. doi:10.1007/s00289-018-2577-6. ISSN   1436-2449. S2CID   105389177.
  22. National Toxicology Program (2011). "Diglycidyl resorcinol ether". Report on Carcinogens: Carcinogen Profiles. 12: 163–164. ISSN   1551-8280. PMID   21852825.
  23. Berdasco, Nancy Anne M.; Waechter, John M. (2012-08-17), Bingham, Eula; Cohrssen, Barbara; Powell, Charles H. (eds.), "Epoxy Compounds: Aromatic Diglycidyl Ethers, Polyglycidyl Ethers, Glycidyl Esters, and Miscellaneous Epoxy Compounds", Patty's Toxicology, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 491–528, doi:10.1002/0471435139.tox083.pub2, ISBN   978-0-471-12547-1 , retrieved 2022-07-28

Further reading

External Websites