Glycosyl

Last updated
The b-D-glucopyranosyl group which is obtained by the removal of the hemiacetal hydroxyl group from b-D-glucopyranose Beta-D-Glucopyranosyl.png
The β-D-glucopyranosyl group which is obtained by the removal of the hemiacetal hydroxyl group from β-D-glucopyranose

In organic chemistry, a glycosyl group is a univalent free radical or substituent structure obtained by removing the hydroxyl (−OH) group from the hemiacetal (−CH(OH)O−) group found in the cyclic form of a monosaccharide and, by extension, of a lower oligosaccharide. Glycosyl groups are exchanged during glycosylation from the glycosyl donor, the electrophile, to the glycosyl acceptor, the nucleophile. [1] The outcome of the glycosylation reaction is largely dependent on the reactivity of each partner. [2] Glycosyl also reacts with inorganic acids, such as phosphoric acid, forming an ester such as glucose 1-phosphate. [3]

Contents

Examples

In cellulose, glycosyl groups link together 1,4-β-D-glucosyl units to form chains of (1,4-β-D-glucosyl)n. Other examples include ribityl in 6,7-Dimethyl-8-ribityllumazine, and glycosylamines.

Alternative substituent groups

The b-D-glucopyranose-3-O-yl group which is obtained by the removal of a hydrogen from the C3 hydroxyl of b-D-glucopyranose Beta-D-Glucopyranos-3-O-yl.png
The β-D-glucopyranose-3-O-yl group which is obtained by the removal of a hydrogen from the C3 hydroxyl of β-D-glucopyranose

Instead of the hemiacetal hydroxyl group, a hydrogen atom can be removed to form a substituent, for example the hydrogen from the C3 hydroxyl of a glucose molecule. Then the substituent is called D-glucopyranos-3-O-yl as it appears in the name of the drug Mifamurtide.

Recent detection of the Au3+ in living organism was possible through the use of C-glycosyl pyrene, where its permeability through cell membrane and fluorescence properties were used to detect Au3+. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Carbohydrate</span> Organic compound that consists only of carbon, hydrogen, and oxygen

A carbohydrate is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 and thus with the empirical formula Cm(H2O)n, which does not mean the H has covalent bonds with O. However, not all carbohydrates conform to this precise stoichiometric definition, nor are all chemicals that do conform to this definition automatically classified as carbohydrates.

<span class="mw-page-title-main">Hydroxy group</span> Chemical group (–OH)

In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula −OH and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy groups. Both the negatively charged anion HO, called hydroxide, and the neutral radical HO·, known as the hydroxyl radical, consist of an unbonded hydroxy group.

A glycosidic bond or glycosidic linkage is a type of ether bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate.

In organic chemistry, a hemiacetal or a hemiketal has the general formula R1R2C(OH)OR, where R1, R2 is hydrogen or an organic substituent. They generally result from the addition of an alcohol to an aldehyde or a ketone, although the latter are sometimes called hemiketals. Most sugars are hemiacetals.

<span class="mw-page-title-main">Dicarbonyl</span> Molecule containing two adjacent C=O groups

In organic chemistry, a dicarbonyl is a molecule containing two carbonyl groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbonyls are in close enough proximity that their reactivity is changed, such as 1,2-, 1,3-, and 1,4-dicarbonyls. Their properties often differ from those of monocarbonyls, and so they are usually considered functional groups of their own. These compounds can have symmetrical or unsymmetrical substituents on each carbonyl, and may also be functionally symmetrical or unsymmetrical.

A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol may also be called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified. They are used as protecting groups of carbonyl groups, making them essential in synthesis of organic chemistry.

<span class="mw-page-title-main">Cellobiose</span> Chemical compound

Cellobiose is a disaccharide with the formula (C6H7(OH)4O)2O. It is classified as a reducing sugar - any sugar that possesses the ability or function of a reducing agent. The chemical structure of cellobiose is derived from the condensation of a pair of β-glucose molecules forming a β(1→4) bond. It can be hydrolyzed to glucose enzymatically or with acid. Cellobiose has eight free alcohol (OH) groups, one acetal linkage, and one hemiacetal linkage, which give rise to strong inter- and intramolecular hydrogen bonds. It is a white solid.

<span class="mw-page-title-main">Glycogenin</span> Enzyme involved in converting glucose to glycogen

Glycogenin is an enzyme involved in converting glucose to glycogen. It acts as a primer, by polymerizing the first few glucose molecules, after which other enzymes take over. It is a homodimer of 37-kDa subunits and is classified as a glycosyltransferase.

β-Glucosidase Class of enzymes

β-Glucosidase is an enzyme that catalyses the following reaction:

The enzyme 6-phospho-β-glucosidase (EC 3.2.1.86) catalyzes the following reaction:

The Fleming–Tamao oxidation, or Tamao–Kumada–Fleming oxidation, converts a carbon–silicon bond to a carbon–oxygen bond with a peroxy acid or hydrogen peroxide. Fleming–Tamao oxidation refers to two slightly different conditions developed concurrently in the early 1980s by the Kohei Tamao and Ian Fleming research groups.

A chemical glycosylation reaction involves the coupling of a glycosyl donor, to a glycosyl acceptor forming a glycoside. If both the donor and acceptor are sugars, then the product is an oligosaccharide. The reaction requires activation with a suitable activating reagent. The reactions often result in a mixture of products due to the creation of a new stereogenic centre at the anomeric position of the glycosyl donor. The formation of a glycosidic linkage allows for the synthesis of complex polysaccharides which may play important roles in biological processes and pathogenesis and therefore having synthetic analogs of these molecules allows for further studies with respect to their biological importance.

<span class="mw-page-title-main">Armed and disarmed saccharides</span>

The armed/disarmed approach to glycosylation is an effective way to prevent sugar molecules from self-glycosylation when synthesizing disaccharides. This approach was first recognized when acetylated sugars only acted as glycosyl acceptors when reacted with benzylated sugars. The acetylated sugars were termed “disarmed” while the benzylated sugars were termed “armed”.

A glycosyl acceptor is any suitable nucleophile-containing molecule that will react with a glycosyl donor to form a new glycosidic bond. By convention, the acceptor is the member of this pair which did not contain the resulting anomeric carbon of the new glycosidic bond. Since the nucleophilic atom of the acceptor is typically an oxygen atom, this can be remembered using the mnemonic of the acceptor is the alcohol. A glycosyl acceptor can be a mono- or oligosaccharide that contains an available nucleophile, such as an unprotected hydroxyl.

<span class="mw-page-title-main">Oxocarbenium</span>

An oxocarbeniumion is a chemical species characterized by a central sp2-hybridized carbon, an oxygen substituent, and an overall positive charge that is delocalized between the central carbon and oxygen atoms. An oxocarbenium ion is represented by two limiting resonance structures, one in the form of a carbenium ion with the positive charge on carbon and the other in the form of an oxonium species with the formal charge on oxygen. As a resonance hybrid, the true structure falls between the two. Compared to neutral carbonyl compounds like ketones or esters, the carbenium ion form is a larger contributor to the structure. They are common reactive intermediates in the hydrolysis of glycosidic bonds, and are a commonly used strategy for chemical glycosylation. These ions have since been proposed as reactive intermediates in a wide range of chemical transformations, and have been utilized in the total synthesis of several natural products. In addition, they commonly appear in mechanisms of enzyme-catalyzed biosynthesis and hydrolysis of carbohydrates in nature. Anthocyanins are natural flavylium dyes, which are stabilized oxocarbenium compounds. Anthocyanins are responsible for the colors of a wide variety of common flowers such as pansies and edible plants such as eggplant and blueberry.

Carbohydrate synthesis is a sub-field of organic chemistry concerned with generating complex carbohydrate structures from simple units (monosaccharides) through natural or unnatural processes. The generation of carbohydrate structures involves linking glycosyl groups like monosaccharides or oligosaccharides through glycosidic bonds is called glycosylation. Carbohydrate synthesis aims to generate the polysaccharides with controlled structures through atomically economic methods. Therefore, it is important to construct glycosidic linkages that have optimum molecular geometry (stereoselectivity) and the stable bond (regioselectivity) at the reaction site.

Dolichyl β-<small>D</small>-glucosyl phosphate Chemical compound

Dolichyl β-d-glucosyl phosphate is a molecule involved in glycosylation. It is a polyprenyl glycosyl phosphate having dolichol as the polyprenyl component and β-d-glucose as the glycosyl component.

<span class="mw-page-title-main">Trichloroacetonitrile</span> Chemical compound

Trichloroacetonitrile is an organic compound with the formula CCl3CN. It is a colourless liquid, although commercial samples often are brownish. It is used commercially as a precursor to the fungicide etridiazole. It is prepared by dehydration of trichloroacetamide. As a bifunctional compound, trichloroacetonitrile can react at both the trichloromethyl and the nitrile group. The electron-withdrawing effect of the trichloromethyl group activates the nitrile group for nucleophilic additions. The high reactivity makes trichloroacetonitrile a versatile reagent, but also causes its susceptibility towards hydrolysis.

Free radical damage to DNA can occur as a result of exposure to ionizing radiation or to radiomimetic compounds. Damage to DNA as a result of free radical attack is called indirect DNA damage because the radicals formed can diffuse throughout the body and affect other organs. Malignant melanoma can be caused by indirect DNA damage because it is found in parts of the body not exposed to sunlight. DNA is vulnerable to radical attack because of the very labile hydrogens that can be abstracted and the prevalence of double bonds in the DNA bases that free radicals can easily add to.

<span class="mw-page-title-main">Ribose</span> Group of simple sugar and carbohydrate compounds

Ribose is a simple sugar and carbohydrate with molecular formula C5H10O5 and the linear-form composition H−(C=O)−(CHOH)4−H. The naturally occurring form, d-ribose, is a component of the ribonucleotides from which RNA is built, and so this compound is necessary for coding, decoding, regulation and expression of genes. It has a structural analog, deoxyribose, which is a similarly essential component of DNA. l-ribose is an unnatural sugar that was first prepared by Emil Fischer and Oscar Piloty in 1891. It was not until 1909 that Phoebus Levene and Walter Jacobs recognised that d-ribose was a natural product, the enantiomer of Fischer and Piloty's product, and an essential component of nucleic acids. Fischer chose the name "ribose" as it is a partial rearrangement of the name of another sugar, arabinose, of which ribose is an epimer at the 2' carbon; both names also relate to gum arabic, from which arabinose was first isolated and from which they prepared l-ribose.

References

  1. Crich, David (2010-08-17). "Mechanism of a Chemical Glycosylation Reaction". Accounts of Chemical Research. 43 (8): 1144–1153. doi:10.1021/ar100035r. ISSN   0001-4842. PMID   20496888.
  2. van der Vorm, Stefan; van Hengst, Jacob M. A.; Bakker, Marloes; Overkleeft, Herman S.; van der Marel, Gijsbert A.; Codée, Jeroen D. C. (2018-07-02). "Mapping the Relationship between Glycosyl Acceptor Reactivity and Glycosylation Stereoselectivity". Angewandte Chemie International Edition. 57 (27): 8240–8244. doi:10.1002/anie.201802899. ISSN   1433-7851. PMC   6032835 . PMID   29603532.
  3. Davies, Gideon; Henrissat, Bernard (September 1995). "Structures and mechanisms of glycosyl hydrolases". Structure. 3 (9): 853–859. doi: 10.1016/S0969-2126(01)00220-9 . PMID   8535779.
  4. Dolai, Bholanath; Nayim, Sk; Hossain, Maidul; Pahari, Pallab; Kumar Atta, Ananta (2019-01-15). "A triazole linked C-glycosyl pyrene fluorescent sensor for selective detection of Au3+ in aqueous solution and its application in bioimaging". Sensors and Actuators B: Chemical. 279: 476–482. doi:10.1016/j.snb.2018.09.105. ISSN   0925-4005. S2CID   104657218.