Polysialic acid

Last updated

Polysialic acid is an unusual posttranslational modification that occurs on neural cell adhesion molecules (NCAM). Polysialic acid is considerably anionic. This strong negative charge gives this modification the ability to change the protein's surface charge and binding ability. In the synapse, polysialation of NCAM prevents its ability to bind to NCAMs on the adjacent membrane.

Contents

Structure

Polysialic acid (polySia) is polymer of linearly repeating monomer units of α2,8- and α2,9-glycosidic linked sialic acid residues. Sialic acid refers to carboxylated 9-carbon sugars, 2-keto-3-dexoxy-D-glycero-nononic acids. [1] An unusual property of this sugar is that it often polymerizes into polySia. This is accomplished by attaching the monomers to the nonreducing end of the glycan. This mostly consists of Neu5Ac subunits. [2] It is polyanionic and bulky, meaning there is little ability to reach its central molecules. polySia is useful in signaling in vertebrates and on the cell surface of few glycoproteins and glycolipids causing modifications, and it has been recently found that the function of polySia relates almost directly to its degree of polymerization. [2] The number of units can range from 8 to greater than 400. This vast range causes differences in the polySia's ability to adhere different cells, assist in cellular migration, synapse formation, and regulate adhesion in nerve cells by modeling and formating them. [3] polySia's most prominent role is in post-translational modifications in a few proteins, with the main one being NCAM. [4] polySia links to adhesion molecules causing their adhesive properties to be subdued allowing for the detailed control of cell migration and cell to cell relations. This is caused by polySia's bulky and polyanionic properties.

The human body produces polySia naturally and attaches it to a various number of proteins. This is done by linking polySia on the α2,3- or α2,6- terminal of the glycoprotein. O-linked glycosylation through threonine or N-linked glycosylation through asparagine is employed. This polySia linkage is found in proteins such as NCAM, E-selectin ligand 1 (ESL-1), C–C chemokine receptor type 7 (CCR7), synaptic cell adhesion molecule-1 (SynCAM-1), neuropilin-2 (NRP-2), the CD36 scavenger receptor found in the milk of humans, and the α-subunit of the voltage-sensitive sodium channel. [2] The synthesis of polySia is enzymatically formed by α2,8-sialyltransferase (ST8Sia) in a Type II transmembrane protein located on the Golgi Apparatus membrane. [2] ST8Sia does this by adding sialic acids to the terminal end of the glycan through the CMP-sialic acid donor at various lengths depending on necessity. The length is controlled extensively by the expression of polysialyltransferase enzymes, once again controlling the function of polySia.

Discovery and methods of detection

polySia was discovered in E. coli K-235 by Barry and Goebel in 1957. [1] E. coli is an encapsulated, gram-negative bacteria in which Barry and Goebel studied, pinpointing polySia, which they called colominic acid. Following this discovery, multiple other bacterial capsules abundant in glycans were found to contain polySia. This included Neisseia meningitidis serogroups B and C in 1975. This was done by the use of a horse anti-polySia polyclonal antibody, being one of the first effective immunochemical probes. This was revolutionary as the anti-polySia antibodies were used to find polySia on proteins and cells. Mannheimia haemolytica A2, Moraxella nonliquifaciens , and E. coli K92 were found in 2013. [1] Due to the capsule containing polySia, many scientists have tried to generate vaccines for these specific bacteria, notoriously difficult to target. However, their successes have been numbered as α2,8-polySia is naturally produced by humans. Another issue is that polySia found in bacteria does not produce a solid or consistent immune response. [1]

Another method of polySia detection relies on molecular labeling with fluorescence. This process, started in 1998, involves exposing α2→8-linked N-acylneuraminic acid (Neu5Acyl) to periodate oxidation causing the terminals to be oxidized and in between untouched. If C9 compounds are observed after this exposure it indicates the presence of polySia. The way these can be numbered is by anion exchange chromatography after periodate oxidation with the label 1,2-diamino-4,5-methylenedioxybenzene (DMB) on C7 and C9. It is known that there are many different structures of polySia and these were difficult to recognize and detect until this fluorescent labeling, making it very advantageous. [1]

Function in humans

polySia is involved in many natural human functions. The major examples include membranes, neuron signaling, the immune system, neutrophil extracellular trap formation, and macrophage and microglia function. First, polySia makes membrane modifications due to interactions with a variety of factors. These could include repulsive forces between the polyanionic polySia and the mostly negatively charged glycocalyx. [2] Because of these interactions the membrane is edited in its ability to interact with other cells, its surface charge distribution, inter-membrane interaction, pH, and membrane potential. Hydration and charge were noted before and after removing polySia from a membrane and a 25% decrease in the distance between cells was observed. [2] This is due to the anti-adhesive properties of polySia. polySia does not only have repulsive interactions, as there are positive charge molecules located in lipid rafts, such as NCAM. The interaction between polySia and NCAM greatly affects NCAM's signaling ability as its composition is altered when they meet. Other forms of neuron signaling polySia is involved in include brain-derived neurotrophic factor (BDNF) and fibroblast growth factor 2 (FGF2). With nearly the same mechanism, the act of polysialylation causes BDNF or FGF2 complexes through electrostatic interactions. This allows for the binding of polySia and these complexes causing polySia to be a reservoir. polySia then regulates the concentration of neurotrophins. Because they are not allowed to diffuse, signaling is more efficient. polySia is also found on immune cell surfaces. Some of the proteins are known, but many are not and the mechanisms are still being studied. However, it is known that polySia is in regulatory functions in the immune system leading to protection from invaders and response to damaged tissue. [2] polySia is involved in NETosis which is a reactionary function of the body in the presence of foreign invaders. It is the intentional death of neutrophils. polySia ensures that this targeted cell death does not kill cells that are healthy and unaffected, as well as containing antimicrobial attributes. This is done by polySia by binding to lactoferrin, another antimicrobial molecule, surrounding neutrophils. polySia binding causes a tighter shell of lactoferrin around the cell membrane. [2] polySia binds with Siglec-11 allowing for the regulation of microglia through exosomes. This shows that polySia binding with Siglec-11 causes a delay in neurodegeneration and control of neuroinflammation. polySia also limits inflammation in macrophages. polySia was found to have limited the expression of tumour necrosis factor (TNF). [2]

Related Research Articles

<span class="mw-page-title-main">Integrin</span> Instance of a defined set in Homo sapiens with Reactome ID (R-HSA-374573)

Integrins are transmembrane receptors that facilitate cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, organization of the intracellular cytoskeleton, and movement of new receptors to the cell membrane. The presence of integrins allows rapid and flexible responses to events at the cell surface.

<span class="mw-page-title-main">Glycoprotein</span> Protein with oligosaccharide modifications

Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycosylation. Secreted extracellular proteins are often glycosylated.

An oligosaccharide is a saccharide polymer containing a small number of monosaccharides. Oligosaccharides can have many functions including cell recognition and cell adhesion.

<span class="mw-page-title-main">Sialic acid</span>

Sialic acids are a class of alpha-keto acid sugars with a nine-carbon backbone. The term "sialic acid" was first introduced by Swedish biochemist Gunnar Blix in 1952. The most common member of this group is N-acetylneuraminic acid found in animals and some prokaryotes.

<span class="mw-page-title-main">Cell adhesion</span> Process of cell attachment

Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as cell junctions or indirect interaction, where cells attach to surrounding extracellular matrix, a gel-like structure containing molecules released by cells into spaces between them. Cells adhesion occurs from the interactions between cell-adhesion molecules (CAMs), transmembrane proteins located on the cell surface. Cell adhesion links cells in different ways and can be involved in signal transduction for cells to detect and respond to changes in the surroundings. Other cellular processes regulated by cell adhesion include cell migration and tissue development in multicellular organisms. Alterations in cell adhesion can disrupt important cellular processes and lead to a variety of diseases, including cancer and arthritis. Cell adhesion is also essential for infectious organisms, such as bacteria or viruses, to cause diseases.

<span class="mw-page-title-main">Glycolipid</span> Class of chemical compounds

Glycolipids are lipids with a carbohydrate attached by a glycosidic (covalent) bond. Their role is to maintain the stability of the cell membrane and to facilitate cellular recognition, which is crucial to the immune response and in the connections that allow cells to connect to one another to form tissues. Glycolipids are found on the surface of all eukaryotic cell membranes, where they extend from the phospholipid bilayer into the extracellular environment.

<span class="mw-page-title-main">Neural cell adhesion molecule</span> Mammalian protein found in Homo sapiens

Neural cell adhesion molecule (NCAM), also called CD56, is a homophilic binding glycoprotein expressed on the surface of neurons, glia and skeletal muscle. Although CD56 is often considered a marker of neural lineage commitment due to its discovery site, CD56 expression is also found in, among others, the hematopoietic system. Here, the expression of CD56 is mostly associated with, but not limited to, natural killer cells. CD56 has been detected on other lymphoid cells, including gamma delta (γδ) Τ cells and activated CD8+ T cells, as well as on dendritic cells. NCAM has been implicated as having a role in cell–cell adhesion, neurite outgrowth, synaptic plasticity, and learning and memory.

<span class="mw-page-title-main">Selectin</span> Family of cell adhesion molecules

The selectins are a family of cell adhesion molecules. All selectins are single-chain transmembrane glycoproteins that share similar properties to C-type lectins due to a related amino terminus and calcium-dependent binding. Selectins bind to sugar moieties and so are considered to be a type of lectin, cell adhesion proteins that bind sugar polymers.

<span class="mw-page-title-main">L-selectin</span> Mammalian protein found in Homo sapiens

L-selectin, also known as CD62L, is a cell adhesion molecule found on the cell surface of leukocytes, and the blastocyst. It is coded for in the human by the SELL gene. L-selectin belongs to the selectin family of proteins, which recognize sialylated carbohydrate groups containing a Sialyl LewisX (sLeX) determinant. L-selectin plays an important role in both the innate and adaptive immune responses by facilitating leukocyte-endothelial cell adhesion events. These tethering interactions are essential for the trafficking of monocytes and neutrophils into inflamed tissue as well as the homing of lymphocytes to secondary lymphoid organs. L-selectin is also expressed by lymphoid primed hematopoietic stem cells and may participate in the migration of these stem cells to the primary lymphoid organs. In addition to its function in the immune response, L-selectin is expressed on embryonic cells and facilitates the attachment of the blastocyst to the endometrial endothelium during human embryo implantation.

Siglecs(Sialic acid-binding immunoglobulin-type lectins) are cell surface proteins that bind sialic acid. They are found primarily on the surface of immune cells and are a subset of the I-type lectins. There are 14 different mammalian Siglecs, providing an array of different functions based on cell surface receptor-ligand interactions.

<span class="mw-page-title-main">Galectin</span> Protein family binding to β-galactoside sugars

Galectins are a class of proteins that bind specifically to β-galactoside sugars, such as N-acetyllactosamine, which can be bound to proteins by either N-linked or O-linked glycosylation. They are also termed S-type lectins due to their dependency on disulphide bonds for stability and carbohydrate binding. There have been about 15 galectins discovered in mammals, encoded by the LGALS genes, which are numbered in a consecutive manner. Only galectin-1, -2, -3, -4, -7, -7B, -8, -9, -9B, 9C, -10, -12, -13, -14, and -16 have been identified in humans. Galectin-5 and -6 are found in rodents, whereas galectin-11 and -15 are uniquely found in sheep and goats. Members of the galectin family have also been discovered in other mammals, birds, amphibians, fish, nematodes, sponges, and some fungi. Unlike the majority of lectins they are not membrane bound, but soluble proteins with both intra- and extracellular functions. They have distinct but overlapping distributions but found primarily in the cytosol, nucleus, extracellular matrix or in circulation. Although many galectins must be secreted, they do not have a typical signal peptide required for classical secretion. The mechanism and reason for this non-classical secretion pathway is unknown.

<span class="mw-page-title-main">Integrin beta 2</span> Mammalian protein found in Homo sapiens

In molecular biology, CD18 is an integrin beta chain protein that is encoded by the ITGB2 gene in humans. Upon binding with one of a number of alpha chains, CD18 is capable of forming multiple heterodimers, which play significant roles in cellular adhesion and cell surface signaling, as well as important roles in immune responses. CD18 also exists in soluble, ligand binding forms. Deficiencies in CD18 expression can lead to adhesion defects in circulating white blood cells in humans, reducing the immune system's ability to fight off foreign invaders.

<span class="mw-page-title-main">ST8SIA4</span> Protein-coding gene in the species Homo sapiens

CMP-N-acetylneuraminate-poly-alpha-2,8-sialyltransferase is an enzyme that in humans is encoded by the ST8SIA4 gene.

<span class="mw-page-title-main">ST8SIA2</span>

Alpha-2,8-sialyltransferase 8B is an enzyme that in humans is encoded by the ST8SIA2 gene.

<span class="mw-page-title-main">SIGLEC8</span> Protein-coding gene in the species Homo sapiens

Sialic acid-binding Ig-like lectin 8 is a protein that in humans is encoded by the SIGLEC8 gene. This gene is located on chromosome 19q13.4, about 330 kb downstream of the SIGLEC9 gene. Within the siglec family of transmembrane proteins, Siglec-8 belongs to the CD33-related siglec subfamily, a subfamily that has undergone rapid evolution.

<span class="mw-page-title-main">SIGLEC10</span> Protein-coding gene in the species Homo sapiens

Sialic acid-binding Ig-like lectin 10 is a protein that in humans is encoded by the SIGLEC10 gene. Siglec-G is often referred to as the murine paralog of human Siglec-10

The following outline is provided as an overview of and topical guide to immunology:

<span class="mw-page-title-main">Integrin-like receptors</span>

Integrin-like receptors (ILRs) are found in plants and carry unique functional properties similar to true integrin proteins. True homologs of integrins exist in mammals, invertebrates, and some fungi but not in plant cells. Mammalian integrins are heterodimer transmembrane proteins that play a large role bidirectional signal transduction. As transmembrane proteins, integrins connect the extracellular matrix (ECM) to the plasma membrane of the animal cell. The extracellular matrix of plant cells, fungi, and some protist is referred to as the cell wall. The plant cell wall is composed of a tough cellulose polysaccharide rather than the collagen fibers of the animal ECM. Even with these differences, research indicates that similar proteins involved in the interaction between the ECM and animals cells are also involved in the interaction of the cell wall and plant cells.

<span class="mw-page-title-main">SIGLEC6</span> Protein-coding gene in the species Homo sapiens

Sialic acid-binding Ig-like lectin 6 is a protein that in humans is encoded by the SIGLEC6 gene. The gene was originally named CD33L (CD33-like) due to similarities between these genes but later became known as OB-BP1 due to its ability to bind to this factor and, finally, SIGLEC6 as the sixth member of the SIGLEC family of receptors to be identified. The protein has also been given the CD designation CD327.

GlycoRNAs are small non-coding RNAs with sialylated glycans.

References

  1. 1 2 3 4 5 Colley, Karen J.; Kitajima, Ken; Sato, Chihiro (2014-11-01). "Polysialic acid: Biosynthesis, novel functions and applications". Critical Reviews in Biochemistry and Molecular Biology. 49 (6): 498–532. doi:10.3109/10409238.2014.976606. ISSN   1040-9238. PMID   25373518. S2CID   1747164.
  2. 1 2 3 4 5 6 7 8 9 Mindler, Katja; Ostertag, Elena; Stehle, Thilo (2021-09-01). "The polyfunctional polysialic acid: A structural view". Carbohydrate Research. 507: 108376. doi:10.1016/j.carres.2021.108376. ISSN   0008-6215. PMID   34273862.
  3. Wu, Jianrong; Zhan, Xiaobei; Liu, Liming; Xia, Xiaole (2018-11-01). "Bioproduction, purification, and application of polysialic acid". Applied Microbiology and Biotechnology. 102 (22): 9403–9409. doi:10.1007/s00253-018-9336-3. ISSN   1432-0614. PMID   30244279. S2CID   52338276.
  4. Guo, Xiaoxiao; Elkashef, Sara M.; Patel, Anjana; Ribeiro Morais, Goreti; Shnyder, Steven D.; Loadman, Paul M.; Patterson, Laurence H.; Falconer, Robert A. (2021-05-01). "An assay for quantitative analysis of polysialic acid expression in cancer cells". Carbohydrate Polymers. 259: 117741. doi:10.1016/j.carbpol.2021.117741. ISSN   0144-8617. PMID   33674001. S2CID   232130509.