Intrinsic, or rho-independent termination, is a process to signal the end of transcription and release the newly constructed RNA molecule. In bacteria such as E. coli , transcription is terminated either by a rho-dependent process or rho-independent process. In the Rho-dependent process, the rho-protein locates and binds the signal sequence in the mRNA and signals for cleavage. Contrarily, intrinsic termination does not require a special protein to signal for termination and is controlled by the specific sequences of RNA. When the termination process begins, the transcribed mRNA forms a stable secondary structure hairpin loop, also known as a stem-loop. This RNA hairpin is followed by multiple uracil nucleotides. The bonds between uracil (rU) and adenine (dA) are very weak. A protein bound to RNA polymerase (nusA) binds to the stem-loop structure tightly enough to cause the polymerase to temporarily stall. This pausing of the polymerase coincides with transcription of the poly-uracil sequence. The weak adenine-uracil bonds lower the energy of destabilization for the RNA-DNA duplex, allowing it to unwind and dissociate from the RNA polymerase. Overall, the modified RNA structure is what terminates transcription.
Stem-loop structures that are not followed by a poly-uracil sequence cause the RNA polymerase to pause, but it will typically continue transcription after a brief time because the duplex is too stable to unwind far enough to cause termination.
Rho-independent transcription termination is a frequent mechanism underlying the activity of cis-acting RNA regulatory elements, such as riboswitches.
The purpose function of intrinsic termination is to signal for the dissociation of the ternary elongation complex (TEC), ending the transcript. Intrinsic termination independent of the protein Rho, as opposed to Rho-dependent termination, where the bacterial Rho protein comes in and acts on the RNA polymerase, causing it to dissociate. [1] Here, there is no extra protein and the transcript forms its own loop structure. Intrinsic termination thus regulates the level of transcription as well, determining how many Polymerase can transcribe a gene over a given period of time, and can help prevent interactions with neighboring chromosomes. [1]
The process itself is regulated through both positive and negative termination factors, usually through modification of the hairpin structure. This is accomplished through interactions with single stranded RNA that corresponds to the upstream area of the loop, resulting in disruption of the termination process. Furthermore, there is some implication that the nut site may also contribute to regulation, as it is involved in recruitment of some critical components in the formation of the hairpin. [2]
In intrinsic termination, the RNA transcript doubles back and base pairs with itself, creating an RNA stem-loop, or hairpin, structure. This structure is critical for the release of both the transcript and polymerase at the end of transcription. [3] In living cells, the key components are the stable stem-loop itself, as well as the sequence of 6-8 uracil residues that follow it. [3] The stem usually consists of 8-9 mostly guanine and cytosine (G-C) base pairs, and the loop consists of 4-8 residues. It is thought that the stem portion of the structure is essential for transcription termination, while the loop is not. [4] This is suggested by the fact that termination can be achieved in non-native structures that do not include the loop. [5]
The stem portion of the hairpin is usually rich in G-C base pairs. G-C base pairs have significant base-stacking interactions, and can form three hydrogen bonds with each other, which makes them very thermodynamically favorable. Conversely, while the uracil-rich sequence that follows the hairpin is not always necessary for termination, [6] it is hypothesized that the uracil-rich sequence aids in intrinsic termination because the U-A bond is not as strong as G-C bonds. [4] This inherent instability acts to kinetically favor the dissociation of the RNA transcript. [4]
To determine the optimal length of the stem, researchers modified its length and observed how quickly termination occurred. [3] When the length of the stem was lengthened or shortened from the standard 8-9 base pair length, termination was less efficient, and if the changes were great enough, termination ceased completely. [3]
Experiments determined that if an oligonucleotide sequence that is identical to the downstream portion of the stem is present, it will base pair with the upstream portion. [5] This creates a structure that is analogous to the native stem-loop structure but is missing the loop at the end. Without the presence of the loop, intrinsic termination is still able to occur. [5] This indicates that the loop is not inherently necessary for intrinsic termination.[ citation needed ]
Generally, the absence of the uracil-rich sequence following the stem-loop will result in a delay or pause in transcription, but termination will not cease completely. [6]
Intrinsic termination is cued by signals directly encoded in the DNA and RNA. Signal appears in as a hairpin and is followed by 8 Uridines at the 3' end. This leads to a rapid dissociation of the elongation complex . Hairpin inactivates and destabilizes the TEC by weakening interactions in the RNA-DNA binding site and other sites that hold this complex together. The pausing induced by the stretch of uracils is important and provides time for hairpin formation. In absence of U-tract, hair pin formation does not result in efficient termination, indicating its importance in this process. [7]
The elongation destabilization process occurs in four steps [7]
In terms of inhibitors of intrinsic termination, much is still unknown. One of the few examples that is known is bacteriophage protein 7. This is made up of 3.4A and 4.0A cryo-EM structures of P7-NusA-TEC and P7-TEC. [8] This bacteriophage protein 7 stops transcription termination by blocking the RNA polymerase (RNAP) RNA-exit channel and impeding RNA-hairpin formation at the intrinsic terminator. Furthermore, bacteriophage protein 7 inhibits RNAP-clamp motions. [8] Shortening the C-terminal half-helix of the RNAP slightly decreases the inhibitory activity. These RNAP clamp motions have been targeted by some other inhibitors of bacterial RNAP. These inhibitors include myxopyronin, corallopyronin, and ripostatin. These work by inhibiting isomerization. [8]
RNA polymerases in all three domains of life have some version of factor-independent termination. All of them use poly-uracil tracts, though the exact mechanisms and accessory sequences vary. In archaea and eukaryotes, there appears to be no requirement of a hairpin. [9]
Archaeal transcription shares eukaryotic and bacterial ties. With eukaryotes, it shares similarities with its initiation factors that help transcription identify appropriate sequences such as TATA box homologs as well as factors that maintain transcription elongation. However, additional transcription factors similar to those found in bacteria are needed for the whole process to occur. [9]
In terms of transcription termination, the archaeal genome is unique in that it is sensitive to both intrinsic termination and factor-dependent termination. Bioinformatic analysis has shown that approximately half of the genes and operons in Archaea arrange themselves into signals or contain signals for intrinsic termination. [10] Archaeal RNA polymerase is responsive to intrinsic signals both in vivo and in vitro such as the poly-U-rich regions. However, unlike bacterial intrinsic termination, no specific RNA structure or hairpin is needed. The surrounding environment and other genome factors can still influence the termination. [10]
Factor-dependent termination in archaea is also distinct from factor-dependent termination in bacteria. [9] The terminational factor aCASP1 (also known as FttA) recognizes poly-U-rich regions, probably cooperating with the "intrinsic" mode to achieve more efficient termination. [11]
RNA polymerase III performs "intrinsic-like" termination. The majority of genes transcribed by RNAP III have a poly(dT) region. However, although poly(dT) pauses every RNA polymerase, it alone cannot be insufficient; some other mechanism must destablize the clamp. In RNAP III, some poly(dT) sites are indeed occationally read-thorugh: some genes have multiple such regions, allowing transcripts of different lengths to be produced. [12]
The instability of rU:dA hybrids likely is essential to termination by RNAP III. Parts of core subunits C1 and C2, as well as "subcomplexes" C53/37 and C11 are functionally important. A number of extraneous factors can modify the termination behavior. [12]
Transcription is the process of copying a segment of DNA into RNA. The segments of DNA transcribed into RNA molecules that can encode proteins produce messenger RNA (mRNA). Other segments of DNA are transcribed into RNA molecules called non-coding RNAs (ncRNAs).
In molecular biology, RNA polymerase, or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that catalyzes the chemical reactions that synthesize RNA from a DNA template.
A ρ factor is a bacterial protein involved in the termination of transcription. Rho factor binds to the transcription terminator pause site, an exposed region of single stranded RNA after the open reading frame at C-rich/G-poor sequences that lack obvious secondary structure.
A sigma factor is a protein needed for initiation of transcription in bacteria. It is a bacterial transcription initiation factor that enables specific binding of RNA polymerase (RNAP) to gene promoters. It is homologous to archaeal transcription factor B and to eukaryotic factor TFIIB. The specific sigma factor used to initiate transcription of a given gene will vary, depending on the gene and on the environmental signals needed to initiate transcription of that gene. Selection of promoters by RNA polymerase is dependent on the sigma factor that associates with it. They are also found in plant chloroplasts as a part of the bacteria-like plastid-encoded polymerase (PEP).
In genetics, a transcription terminator is a section of nucleic acid sequence that marks the end of a gene or operon in genomic DNA during transcription. This sequence mediates transcriptional termination by providing signals in the newly synthesized transcript RNA that trigger processes which release the transcript RNA from the transcriptional complex. These processes include the direct interaction of the mRNA secondary structure with the complex and/or the indirect activities of recruited termination factors. Release of the transcriptional complex frees RNA polymerase and related transcriptional machinery to begin transcription of new mRNAs.
RNA polymerase II is a multiprotein complex that transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNAP enzymes found in the nucleus of eukaryotic cells. A 550 kDa complex of 12 subunits, RNAP II is the most studied type of RNA polymerase. A wide range of transcription factors are required for it to bind to upstream gene promoters and begin transcription.
Stem-loop intramolecular base pairing is a pattern that can occur in single-stranded RNA. The structure is also known as a hairpin or hairpin loop. It occurs when two regions of the same strand, usually complementary in nucleotide sequence when read in opposite directions, base-pair to form a double helix that ends in an unpaired loop. The resulting structure is a key building block of many RNA secondary structures. As an important secondary structure of RNA, it can direct RNA folding, protect structural stability for messenger RNA (mRNA), provide recognition sites for RNA binding proteins, and serve as a substrate for enzymatic reactions.
In molecular biology, a termination factor is a protein that mediates the termination of RNA transcription by recognizing a transcription terminator and causing the release of the newly made mRNA. This is part of the process that regulates the transcription of RNA to preserve gene expression integrity and are present in both eukaryotes and prokaryotes, although the process in bacteria is more widely understood. The most extensively studied and detailed transcriptional termination factor is the Rho (ρ) protein of E. coli.
In eukaryote cells, RNA polymerase III is a protein that transcribes DNA to synthesize 5S ribosomal RNA, tRNA, and other small RNAs.
In genetics, attenuation is a regulatory mechanism for some bacterial operons that results in premature termination of transcription. The canonical example of attenuation used in many introductory genetics textbooks, is ribosome-mediated attenuation of the trp operon. Ribosome-mediated attenuation of the trp operon relies on the fact that, in bacteria, transcription and translation proceed simultaneously. Attenuation involves a provisional stop signal (attenuator), located in the DNA segment that corresponds to the leader sequence of mRNA. During attenuation, the ribosome becomes stalled (delayed) in the attenuator region in the mRNA leader. Depending on the metabolic conditions, the attenuator either stops transcription at that point or allows read-through to the structural gene part of the mRNA and synthesis of the appropriate protein.
A termination signal is a sequence that signals the end of transcription or translation. Termination signals are found at the end of the part of the chromosome being transcribed during transcription of mRNA. Termination signals bring a stop to transcription, ensuring that only gene-encoding parts of the chromosome are transcribed. Transcription begins at the promoter when RNA polymerase, an enzyme that facilitates transcription of DNA into mRNA, binds to a promoter, unwinds the helical structure of the DNA, and uses the single-stranded DNA as a template to synthesize RNA. Once RNA polymerase reaches the termination signal, transcription is terminated. In bacteria, there are two main types of termination signals: intrinsic and factor-dependent terminators. In the context of translation, a termination signal is the stop codon on the mRNA that elicits the release of the growing peptide from the ribosome.
The trp operon is a group of genes that are transcribed together, encoding the enzymes that produce the amino acid tryptophan in bacteria. The trp operon was first characterized in Escherichia coli, and it has since been discovered in many other bacteria. The operon is regulated so that, when tryptophan is present in the environment, the genes for tryptophan synthesis are repressed.
Antitermination is the prokaryotic cell's aid to fix premature termination of RNA synthesis during the transcription of RNA. It occurs when the RNA polymerase ignores the termination signal and continues elongating its transcript until a second signal is reached. Antitermination provides a mechanism whereby one or more genes at the end of an operon can be switched either on or off, depending on the polymerase either recognizing or not recognizing the termination signal.
Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase.
Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. Gene transcription occurs in both eukaryotic and prokaryotic cells. Unlike prokaryotic RNA polymerase that initiates the transcription of all different types of RNA, RNA polymerase in eukaryotes comes in three variations, each translating a different type of gene. A eukaryotic cell has a nucleus that separates the processes of transcription and translation. Eukaryotic transcription occurs within the nucleus where DNA is packaged into nucleosomes and higher order chromatin structures. The complexity of the eukaryotic genome necessitates a great variety and complexity of gene expression control.
RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters of protein-coding genes in living cells. It consists of RNA polymerase II, a subset of general transcription factors, and regulatory proteins known as SRB proteins.
Post-transcriptional regulation is the control of gene expression at the RNA level. It occurs once the RNA polymerase has been attached to the gene's promoter and is synthesizing the nucleotide sequence. Therefore, as the name indicates, it occurs between the transcription phase and the translation phase of gene expression. These controls are critical for the regulation of many genes across human tissues. It also plays a big role in cell physiology, being implicated in pathologies such as cancer and neurodegenerative diseases.
DSIF is a protein complex that can either negatively or positively affect transcription by RNA polymerase II. It can interact with the negative elongation factor (NELF) to promote the stalling of Pol II at some genes, which is called promoter proximal pausing. The pause occurs soon after initiation, once 20-60 nucleotides have been transcribed. This stalling is relieved by positive transcription elongation factor b (P-TEFb) and Pol II enters productive elongation to resume synthesis till finish. In humans, DSIF is composed of hSPT4 and hSPT5. hSPT5 has a direct role in mRNA capping which occurs while the elongation is paused.
Archaeal transcription is the process in which a segment of archaeal DNA is copied into a newly synthesized strand of RNA using the sole Pol II-like RNA polymerase (RNAP). The process occurs in three main steps: initiation, elongation, and termination; and the end result is a strand of RNA that is complementary to a single strand of DNA. A number of transcription factors govern this process with homologs in both bacteria and eukaryotes, with the core machinery more similar to eukaryotic transcription.
Transcription-translation coupling is a mechanism of gene expression regulation in which synthesis of an mRNA (transcription) is affected by its concurrent decoding (translation). In prokaryotes, mRNAs are translated while they are transcribed. This allows communication between RNA polymerase, the multisubunit enzyme that catalyzes transcription, and the ribosome, which catalyzes translation. Coupling involves both direct physical interactions between RNA polymerase and the ribosome, as well as ribosome-induced changes to the structure and accessibility of the intervening mRNA that affect transcription.