Riboswitch

Last updated
A 3D representation of the lysine riboswitch Lys ribosw 1.jpg
A 3D representation of the lysine riboswitch

In molecular biology, a riboswitch is a regulatory segment of a messenger RNA molecule that binds a small molecule, resulting in a change in production of the proteins encoded by the mRNA. [1] [2] [3] [4] Thus, an mRNA that contains a riboswitch is directly involved in regulating its own activity, in response to the concentrations of its effector molecule. The discovery that modern organisms use RNA to bind small molecules, and discriminate against closely related analogs, expanded the known natural capabilities of RNA beyond its ability to code for proteins, catalyze reactions, or to bind other RNA or protein macromolecules.

Contents

The original definition of the term "riboswitch" specified that they directly sense small-molecule metabolite concentrations. [5] Although this definition remains in common use, some biologists have used a broader definition that includes other cis-regulatory RNAs. However, this article will discuss only metabolite-binding riboswitches.

Most known riboswitches occur in bacteria, but functional riboswitches of one type (the TPP riboswitch) have been discovered in archaea, plants and certain fungi. TPP riboswitches have also been predicted in archaea, [6] but have not been experimentally tested.

History and discovery

Prior to the discovery of riboswitches, the mechanism by which some genes involved in multiple metabolic pathways were regulated remained mysterious. Accumulating evidence increasingly suggested the then-unprecedented idea that the mRNAs involved might bind metabolites directly, to affect their own regulation. These data included conserved RNA secondary structures often found in the untranslated regions (UTRs) of the relevant genes and the success of procedures to create artificial small molecule-binding RNAs called aptamers. [7] [8] [9] [10] [11] In 2002, the first comprehensive proofs of multiple classes of riboswitches were published, including protein-free binding assays, and metabolite-binding riboswitches were established as a new mechanism of gene regulation. [5] [12] [13] [14]

Many of the earliest riboswitches to be discovered corresponded to conserved sequence "motifs" (patterns) in 5' UTRs that appeared to correspond to a structured RNA. For example, comparative analysis of upstream regions of several genes expected to be co-regulated led to the description of the S-box [15] (now the SAM-I riboswitch), the THI-box [9] (a region within the TPP riboswitch), the RFN element [8] (now the FMN riboswitch) and the B12-box [16] (a part of the cobalamin riboswitch), and in some cases experimental demonstrations that they were involved in gene regulation via an unknown mechanism. Bioinformatics has played a role in more recent discoveries, with increasing automation of the basic comparative genomics strategy. Barrick et al. (2004) [17] used BLAST to find UTRs homologous to all UTRs in Bacillus subtilis . Some of these homologous sets were inspected for conserved structure, resulting in 10 RNA-like motifs. Three of these were later experimentally confirmed as the glmS, glycine and PreQ1-I riboswitches (see below). Subsequent comparative genomics efforts using additional taxa of bacteria and improved computer algorithms have identified further riboswitches that are experimentally confirmed, as well as conserved RNA structures that are hypothesized to function as riboswitches. [18] [19] [20]

Mechanisms

Riboswitches are often conceptually divided into two parts: an aptamer and an expression platform. The aptamer directly binds the small molecule, and the expression platform undergoes structural changes in response to the changes in the aptamer. The expression platform is what regulates gene expression.

Expression platforms typically turn off gene expression in response to the small molecule, but some turn it on. The following riboswitch mechanisms have been experimentally demonstrated.

Types

Secondary structure of a purine riboswitch from Bacillus subtilis RF00167.jpg
Secondary structure of a purine riboswitch from Bacillus subtilis

The following is a list of experimentally validated riboswitches, organized by ligand.

Presumed riboswitches:

Candidate metabolite-binding riboswitches have been identified using bioinformatics, and have moderately complex secondary structures and several highly conserved nucleotide positions, as these features are typical of riboswitches that must specifically bind a small molecule. Riboswitch candidates are also consistently located in the 5' UTRs of protein-coding genes, and these genes are suggestive of metabolite binding, as these are also features of most known riboswitches. Hypothesized riboswitch candidates highly consistent with the preceding criteria are as follows: crcB RNA Motif, manA RNA motif, pfl RNA motif, ydaO/yuaA leader, yjdF RNA motif, ykkC-yxkD leader (and related ykkC-III RNA motif) and the yybP-ykoY leader. The functions of these hypothetical riboswitches remain unknown.

Computational models

Riboswitches have been also investigated using in-silico approaches. [29] [30] [31] In particular, solutions for riboswitch prediction can be divided into two wide categories:

The SwiSpot tool [39] somehow covers both the groups, as it uses conformational predictions to assess the presence of riboswitches.

The RNA world hypothesis

Riboswitches demonstrate that naturally occurring RNA can bind small molecules specifically, a capability that many previously believed was the domain of proteins or artificially constructed RNAs called aptamers. The existence of riboswitches in all domains of life therefore adds some support to the RNA world hypothesis, which holds that life originally existed using only RNA, and proteins came later; this hypothesis requires that all critical functions performed by proteins (including small molecule binding) could be performed by RNA. It has been suggested that some riboswitches might represent ancient regulatory systems, or even remnants of RNA-world ribozymes whose bindings domains are conserved. [13] [18] [40]

As antibiotic targets

Riboswitches could be a target for novel antibiotics. Indeed, some antibiotics whose mechanism of action was unknown for decades have been shown to operate by targeting riboswitches. [41] For example, when the antibiotic pyrithiamine enters the cell, it is metabolized into pyrithiamine pyrophosphate. Pyrithiamine pyrophosphate has been shown to bind and activate the TPP riboswitch, causing the cell to cease the synthesis and import of TPP. Because pyrithiamine pyrophosphate does not substitute for TPP as a coenzyme, the cell dies.

Engineered riboswitches

Since riboswitches are an effective method of controlling gene expression in natural organisms, there has been interest in engineering artificial riboswitches [42] [43] [44] for industrial and medical applications such as gene therapy. [45] [46]

See also

Related Research Articles

<span class="mw-page-title-main">Cobalamin riboswitch</span>

Cobalamin riboswitch is a cis-regulatory element which is widely distributed in 5' untranslated regions of vitamin B12 (Cobalamin) related genes in bacteria.

<span class="mw-page-title-main">FMN riboswitch</span> Highly conserved RNA element

The FMN riboswitch is a highly conserved RNA element which is naturally occurring, and is found frequently in the 5'-untranslated regions of prokaryotic mRNAs that encode for flavin mononucleotide (FMN) biosynthesis and transport proteins. This element is a metabolite-dependent riboswitch that directly binds FMN in the absence of proteins, thus giving it the ability to regulate RNA expression by responding to changes in the concentration of FMN. In Bacillus subtilis, previous studies have shown that this bacterium utilizes at least two FMN riboswitches, where one controls translation initiation, and the other controls premature transcription termination. Regarding the second riboswitch in Bacilius subtilis, premature transcription termination occurs within the 5' untranslated region of the ribDEAHT operon, precluding access to the ribosome-binding site of ypaA mRNA. FMN riboswitches also have various magnesium and potassium ions dispersed throughout the nucleotide structure, some of which participate in binding of FMN.

<span class="mw-page-title-main">Glycine riboswitch</span> RNA element

The bacterial glycine riboswitch is an RNA element that can bind the amino acid glycine. Glycine riboswitches usually consist of two metabolite-binding aptamer domains with similar structures in tandem. The aptamers were originally thought to cooperatively bind glycine to regulate the expression of downstream genes. In Bacillus subtilis, this riboswitch is found upstream of the gcvT operon which controls glycine degradation. It is thought that when glycine is in excess it will bind to both aptamers to activate these genes and facilitate glycine degradation.

<span class="mw-page-title-main">YdaO/yuaA leader</span> RNA structure in bacteria

The YdaO/YuaA leader is a conserved RNA structure found upstream of the ydaO and yuaA genes in Bacillus subtilis and related genes in other bacteria. Its secondary structure and gene associations were predicted by bioinformatics.

<span class="mw-page-title-main">PreQ1 riboswitch</span>

The PreQ1-I riboswitch is a cis-acting element identified in bacteria which regulates expression of genes involved in biosynthesis of the nucleoside queuosine (Q) from GTP. PreQ1 (pre-queuosine1) is an intermediate in the queuosine pathway, and preQ1 riboswitch, as a type of riboswitch, is an RNA element that binds preQ1. The preQ1 riboswitch is distinguished by its unusually small aptamer, compared to other riboswitches. Its atomic-resolution three-dimensional structure has been determined, with the PDB ID 2L1V.

<span class="mw-page-title-main">Purine riboswitch</span>

A purine riboswitch is a sequence of ribonucleotides in certain messenger RNA (mRNA) that selectively binds to purine ligands via a natural aptamer domain. This binding causes a conformational change in the mRNA that can affect translation by revealing an expression platform for a downstream gene, or by forming a translation-terminating stem-loop. The ultimate effects of such translational regulation often take action to manage an abundance of the instigating purine, and might produce proteins that facilitate purine metabolism or purine membrane uptake.

<span class="mw-page-title-main">SAM-II riboswitch</span>

The SAM-II riboswitch is an RNA element found predominantly in Alphaproteobacteria that binds S-adenosyl methionine (SAM). Its structure and sequence appear to be unrelated to the SAM riboswitch found in Gram-positive bacteria. This SAM riboswitch is located upstream of the metA and metC genes in Agrobacterium tumefaciens, and other methionine and SAM biosynthesis genes in other alpha-proteobacteria. Like the other SAM riboswitch, it probably functions to turn off expression of these genes in response to elevated SAM levels. A significant variant of SAM-II riboswitches was found in Pelagibacter ubique and related marine bacteria and called SAM-V. Also, like many structured RNAs, SAM-II riboswitches can tolerate long loops between their stems.

<span class="mw-page-title-main">SAM riboswitch (S-box leader)</span>

The SAM riboswitch is found upstream of a number of genes which code for proteins involved in methionine or cysteine biosynthesis in Gram-positive bacteria. Two SAM riboswitches in Bacillus subtilis that were experimentally studied act at the level of transcription termination control. The predicted secondary structure consists of a complex stem-loop region followed by a single stem-loop terminator region. An alternative and mutually exclusive form involves bases in the 3' segment of helix 1 with those in the 5' region of helix 5 to form a structure termed the anti-terminator form. When SAM is unbound, the anti-terminator sequence sequesters the terminator sequence so the terminator is unable to form, allowing the polymerase to read-through the downstream gene. When S-Adenosyl methionine (SAM) is bound to the aptamer, the anti-terminator is sequestered by an anti-anti-terminator; the terminator forms and terminates the transcription. However, many SAM riboswitches are likely to regulate gene expression at the level of translation.

<span class="mw-page-title-main">TPP riboswitch</span> RNA secondary structure

The TPP riboswitch, also known as the THI element and Thi-box riboswitch, is a highly conserved RNA secondary structure. It serves as a riboswitch that binds thiamine pyrophosphate (TPP) directly and modulates gene expression through a variety of mechanisms in archaea, bacteria and eukaryotes. TPP is the active form of thiamine (vitamin B1), an essential coenzyme synthesised by coupling of pyrimidine and thiazole moieties in bacteria. The THI element is an extension of a previously detected thiamin-regulatory element, the thi box, there is considerable variability in the predicted length and structures of the additional and facultative stem-loops represented in dark blue in the secondary structure diagram Analysis of operon structures has identified a large number of new candidate thiamin-regulated genes, mostly transporters, in various prokaryotic organisms. The x-ray crystal structure of the TPP riboswitch aptamer has been solved.

<span class="mw-page-title-main">PreQ1-II riboswitch</span> Class of riboswitches

PreQ1-II riboswitches form a class of riboswitches that specifically bind pre-queuosine1 (PreQ1), a precursor of the modified nucleoside queuosine. They are found in certain species of Streptococcus and Lactococcus, and were originally identified as a conserved RNA secondary structure called the "COG4708 motif". All known members of this riboswitch class appear to control members of COG4708 genes. These genes are predicted to encode membrane-bound proteins and have been proposed to be a transporter of preQ1, or a related metabolite, based on their association with preQ1-binding riboswitches. PreQ1-II riboswitches have no apparent similarities in sequence or structure to preQ1-I riboswitches, a previously discovered class of preQ1-binding riboswitches. PreQ1 thus joins S-adenosylmethionine as the second metabolite to be found that is the ligand of more than one riboswitch class.

<span class="mw-page-title-main">Cyclic di-GMP-I riboswitch</span>

Cyclic di-GMP-I riboswitches are a class of riboswitch that specifically bind cyclic di-GMP, which is a second messenger that is used in a variety of microbial processes including virulence, motility and biofilm formation. Cyclic di-GMP-I riboswitches were originally identified by bioinformatics as a conserved RNA-like structure called the "GEMM motif". These riboswitches are present in a wide variety of bacteria, and are most common in Clostridia and certain varieties of Pseudomonadota. The riboswitches are present in pathogens such as Clostridium difficile, Vibrio cholerae and Bacillus anthracis. Geobacter uraniumreducens is predicted to have 30 instances of this riboswitch in its genome. A bacteriophage that infects C. difficile is predicted to carry a cyclic di-GMP-I riboswitch, which it might use to detect and exploit the physiological state of bacteria that it infects.

The Magnesium responsive RNA element, not to be confused with the completely distinct M-box riboswitch, is a cis-regulatory element that regulates the expression of the magnesium transporter protein MgtA. It is located in the 5' UTR of this gene. The mechanism for the potential magnesium-sensing capacity of this RNA is still unclear, though a recent report suggests that the RNA element targets the mgtA transcript for degradation by RNase E when cells are grown in high Mg2+ environments.

<span class="mw-page-title-main">Mesoplasma florum riboswitch</span>

Riboswitches are cis-acting regulatory elements located within the 5’UTR of mRNA transcripts. These regulatory elements bind small molecules which results in a conformational change within the 5’UTR of the mRNA. The changes in the mRNA secondary structure subsequently result in changes in the expression of the adjacent open reading frame.

<span class="mw-page-title-main">Fluoride riboswitch</span> Fluoride-binding RNA structure

The fluoride riboswitch is a conserved RNA structure identified by bioinformatics in a wide variety of bacteria and archaea. These RNAs were later shown to function as riboswitches that sense fluoride ions. These "fluoride riboswitches" increase expression of downstream genes when fluoride levels are elevated, and the genes are proposed to help mitigate the toxic effects of very high levels of fluoride.

<span class="mw-page-title-main">Downstream-peptide motif</span>

The Downstream-peptide motif refers to a conserved RNA structure identified by bioinformatics in the cyanobacterial genera Synechococcus and Prochlorococcus and one phage that infects such bacteria. It was also detected in marine samples of DNA from uncultivated bacteria, which are presumably other species of cyanobacteria.

<span class="mw-page-title-main">Glutamine riboswitch</span> Glutamine-binding RNA structure

The glutamine riboswitch is a conserved RNA structure that was predicted by bioinformatics. It is present in a variety of lineages of cyanobacteria, as well as some phages that infect cyanobacteria. It is also found in DNA extracted from uncultivated bacteria living in the ocean that are presumably species of cyanobacteria.

<span class="mw-page-title-main">YjdF RNA motif</span> Conserved RNA structure

The yjdF RNA motif is a conserved RNA structure identified using bioinformatics. Most yjdF RNAs are located in bacteria classified within the phylum Bacillota. A yjdF RNA is found in the presumed 5' untranslated region of the yjdF gene in Bacillus subtilis, and almost all yjdF RNAs are found in the 5' UTRs of homologs of this gene. The function of the yjdF gene is unknown, but the protein that it is predicted to encode is classified by the Pfam Database as DUF2992.

<span class="mw-page-title-main">Cyclic di-GMP-II riboswitch</span>

Cyclic di-GMP-II riboswitches form a class of riboswitches that specifically bind cyclic di-GMP, a second messenger used in multiple bacterial processes such as virulence, motility and biofilm formation. Cyclic di-GMP II riboswitches are structurally unrelated to cyclic di-GMP-I riboswitches, though they have the same function.

SAM-V riboswitch is the fifth known riboswitch to bind S-adenosyl methionine (SAM). It was first discovered in the marine bacterium Candidatus Pelagibacter ubique and can also be found in marine metagenomes. SAM-V features a similar consensus sequence and secondary structure as the binding site of SAM-II riboswitch, but bioinformatics scans cluster the two aptamers independently. These similar binding pockets suggest that the two riboswitches have undergone convergent evolution.

<i>queA</i> RNA motif

The queA RNA motif is a conserved RNA structure that was discovered by bioinformatics. queA motif RNAs have not yet been found in any classified organism; they are known from metagenomic sequences.

References

  1. Nudler E, Mironov AS (January 2004). "The riboswitch control of bacterial metabolism". Trends in Biochemical Sciences. 29 (1): 11–17. doi:10.1016/j.tibs.2003.11.004. PMID   14729327.
  2. Tucker BJ, Breaker RR (June 2005). "Riboswitches as versatile gene control elements". Current Opinion in Structural Biology. 15 (3): 342–348. doi:10.1016/j.sbi.2005.05.003. PMID   15919195.
  3. Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (January 2004). "Riboswitches: the oldest mechanism for the regulation of gene expression?". Trends in Genetics. 20 (1): 44–50. CiteSeerX   10.1.1.312.9100 . doi:10.1016/j.tig.2003.11.008. PMID   14698618.
  4. Batey RT (June 2006). "Structures of regulatory elements in mRNAs". Current Opinion in Structural Biology. 16 (3): 299–306. doi:10.1016/j.sbi.2006.05.001. PMID   16707260.
  5. 1 2 Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR (September 2002). "Genetic control by a metabolite binding mRNA". Chemistry & Biology. 9 (9): 1043–1049. doi: 10.1016/S1074-5521(02)00224-7 . PMID   12323379.
  6. Sudarsan N, Barrick JE, Breaker RR (June 2003). "Metabolite-binding RNA domains are present in the genes of eukaryotes". RNA. 9 (6): 644–647. doi:10.1261/rna.5090103. PMC   1370431 . PMID   12756322.
  7. Nou X, Kadner RJ (June 2000). "Adenosylcobalamin inhibits ribosome binding to btuB RNA". Proceedings of the National Academy of Sciences of the United States of America. 97 (13): 7190–7195. Bibcode:2000PNAS...97.7190N. doi: 10.1073/pnas.130013897 . PMC   16521 . PMID   10852957.
  8. 1 2 Gelfand MS, Mironov AA, Jomantas J, Kozlov YI, Perumov DA (November 1999). "A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes". Trends in Genetics. 15 (11): 439–442. doi:10.1016/S0168-9525(99)01856-9. PMID   10529804.
  9. 1 2 Miranda-Ríos J, Navarro M, Soberón M (August 2001). "A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria". Proceedings of the National Academy of Sciences of the United States of America. 98 (17): 9736–9741. doi: 10.1073/pnas.161168098 . PMC   55522 . PMID   11470904.
  10. Stormo GD, Ji Y (August 2001). "Do mRNAs act as direct sensors of small molecules to control their expression?". Proceedings of the National Academy of Sciences of the United States of America. 98 (17): 9465–9467. Bibcode:2001PNAS...98.9465S. doi: 10.1073/pnas.181334498 . PMC   55472 . PMID   11504932.
  11. Gold L, Brown D, He Y, Shtatland T, Singer BS, Wu Y (January 1997). "From oligonucleotide shapes to genomic SELEX: novel biological regulatory loops". Proceedings of the National Academy of Sciences of the United States of America. 94 (1): 59–64. Bibcode:1997PNAS...94...59G. doi: 10.1073/pnas.94.1.59 . PMC   19236 . PMID   8990161.
  12. Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA, Perumov DA, Nudler E (November 2002). "Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria". Cell. 111 (5): 747–756. doi: 10.1016/S0092-8674(02)01134-0 . PMID   12464185.
  13. 1 2 Winkler W, Nahvi A, Breaker RR (October 2002). "Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression". Nature. 419 (6910): 952–956. Bibcode:2002Natur.419..952W. doi:10.1038/nature01145. PMID   12410317. S2CID   4408592.
  14. Winkler WC, Cohen-Chalamish S, Breaker RR (December 2002). "An mRNA structure that controls gene expression by binding FMN". Proceedings of the National Academy of Sciences of the United States of America. 99 (25): 15908–15913. Bibcode:2002PNAS...9915908W. doi: 10.1073/pnas.212628899 . PMC   138538 . PMID   12456892.
  15. Grundy FJ, Henkin TM (November 1998). "The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria". Molecular Microbiology. 30 (4): 737–749. doi: 10.1046/j.1365-2958.1998.01105.x . PMID   10094622.
  16. Franklund CV, Kadner RJ (June 1997). "Multiple transcribed elements control expression of the Escherichia coli btuB gene". Journal of Bacteriology. 179 (12): 4039–4042. doi:10.1128/jb.179.12.4039-4042.1997. PMC   179215 . PMID   9190822.
  17. Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RR (April 2004). "New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control". Proceedings of the National Academy of Sciences of the United States of America. 101 (17): 6421–6426. Bibcode:2004PNAS..101.6421B. doi: 10.1073/pnas.0308014101 . PMC   404060 . PMID   15096624.
  18. 1 2 Corbino KA, Barrick JE, Lim J, Welz R, Tucker BJ, Puskarz I, Mandal M, Rudnick ND, Breaker RR (2005). "Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria". Genome Biology. 6 (8): R70. doi: 10.1186/gb-2005-6-8-r70 . PMC   1273637 . PMID   16086852.
  19. Weinberg Z, Barrick JE, Yao Z, Roth A, Kim JN, Gore J, Wang JX, Lee ER, Block KF, Sudarsan N, Neph S, Tompa M, Ruzzo WL, Breaker RR (2007). "Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline". Nucleic Acids Research. 35 (14): 4809–4819. doi:10.1093/nar/gkm487. PMC   1950547 . PMID   17621584.
  20. Weinberg Z, Wang JX, Bogue J, Yang J, Corbino K, Moy RH, Breaker RR (March 2010). "Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes". Genome Biology. 11 (3): R31. doi: 10.1186/gb-2010-11-3-r31 . PMC   2864571 . PMID   20230605.
  21. Cheah MT, Wachter A, Sudarsan N, Breaker RR (May 2007). "Control of alternative RNA splicing and gene expression by eukaryotic riboswitches". Nature. 447 (7143): 497–500. Bibcode:2007Natur.447..497C. doi:10.1038/nature05769. PMID   17468745. S2CID   4393918.
  22. Wachter A, Tunc-Ozdemir M, Grove BC, Green PJ, Shintani DK, Breaker RR (November 2007). "Riboswitch control of gene expression in plants by splicing and alternative 3' end processing of mRNAs". The Plant Cell. 19 (11): 3437–3450. doi:10.1105/tpc.107.053645. PMC   2174889 . PMID   17993623.
  23. Bocobza S, Adato A, Mandel T, Shapira M, Nudler E, Aharoni A (November 2007). "Riboswitch-dependent gene regulation and its evolution in the plant kingdom". Genes & Development. 21 (22): 2874–2879. doi:10.1101/gad.443907. PMC   2049190 . PMID   18006684.
  24. André G, Even S, Putzer H, Burguière P, Croux C, Danchin A, Martin-Verstraete I, Soutourina O (October 2008). "S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum". Nucleic Acids Research. 36 (18): 5955–5969. doi:10.1093/nar/gkn601. PMC   2566862 . PMID   18812398.
  25. Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T, Mandin P, Repoila F, Buchrieser C, Cossart P, Johansson J (November 2009). "A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes". Cell. 139 (4): 770–779. doi: 10.1016/j.cell.2009.08.046 . PMID   19914169.
  26. "Team:BYU Provo/Results - 2011.igem.org". 2011.igem.org.
  27. Sherman EM, Esquiaqui J, Elsayed G, Ye JD (March 2012). "An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches". RNA. 18 (3): 496–507. doi:10.1261/rna.031286.111. PMC   3285937 . PMID   22279151.
  28. Bocobza SE, Aharoni A (October 2008). "Switching the light on plant riboswitches". Trends Plant Sci. 13 (10): 526–33. doi:10.1016/j.tplants.2008.07.004. PMID   18778966.
  29. Barrick JE (2009). "Predicting Riboswitch Regulation on a Genomic Scale". Riboswitches. Methods in Molecular Biology. Vol. 540. pp. 1–13. doi:10.1007/978-1-59745-558-9_1. ISBN   978-1-934115-88-6. PMID   19381548.
  30. Barash D, Gabdank I (January 2010). "Energy minimization applied to riboswitches: a perspective and challenges". RNA Biology. 7 (1): 90–97. doi: 10.4161/rna.7.1.10657 . PMID   20061789.
  31. Chen, Shi-Jie; Burke, Donald H; Adamiak, R W (2015). Computational methods for understanding riboswitches / Methods in Enzymology, vol 553. Academic Press. ISBN   978-0-12-801618-3.
  32. Nawrocki EP, Kolbe DL, Eddy SR (May 2009). "Infernal 1.0: inference of RNA alignments". Bioinformatics. 25 (10): 1335–1337. doi:10.1093/bioinformatics/btp157. PMC   2732312 . PMID   19307242.
  33. Abreu-Goodger C, Merino E (July 2005). "RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements". Nucleic Acids Research. 33 (Web Server issue): W690-2. doi:10.1093/nar/gki445. PMC   1160206 . PMID   15980564.
  34. Chang TH, Huang HD, Wu LC, Yeh CT, Liu BJ, Horng JT (July 2009). "Computational identification of riboswitches based on RNA conserved functional sequences and conformations". RNA. 15 (7): 1426–1430. doi:10.1261/rna.1623809. PMC   2704089 . PMID   19460868.
  35. Voss B, Meyer C, Giegerich R (July 2004). "Evaluating the predictability of conformational switching in RNA". Bioinformatics. 20 (10): 1573–1582. doi: 10.1093/bioinformatics/bth129 . PMID   14962925.
  36. Janssen S, Giegerich R (February 2015). "The RNA shapes studio". Bioinformatics. 31 (3): 423–425. doi:10.1093/bioinformatics/btu649. PMC   4308662 . PMID   25273103.
  37. Freyhult E, Moulton V, Clote P (August 2007). "Boltzmann probability of RNA structural neighbors and riboswitch detection". Bioinformatics. 23 (16): 2054–2062. doi: 10.1093/bioinformatics/btm314 . PMID   17573364.
  38. Clote P, Lou F, Lorenz WA (April 2012). "Maximum expected accuracy structural neighbors of an RNA secondary structure". BMC Bioinformatics. 13 (Suppl 5): S6. doi: 10.1186/1471-2105-13-S5-S6 . PMC   3358666 . PMID   22537010.
  39. Barsacchi M, Novoa EM, Kellis M, Bechini A (November 2016). "SwiSpot: modeling riboswitches by spotting out switching sequences". Bioinformatics. 32 (21): 3252–3259. doi: 10.1093/bioinformatics/btw401 . PMID   27378291.
  40. Cochrane JC, Strobel SA (June 2008). "Riboswitch effectors as protein enzyme cofactors". RNA. 14 (6): 993–1002. doi:10.1261/rna.908408. PMC   2390802 . PMID   18430893.
  41. Blount KF, Breaker RR (December 2006). "Riboswitches as antibacterial drug targets". Nature Biotechnology. 24 (12): 1558–1564. doi:10.1038/nbt1268. PMID   17160062. S2CID   34398395.
  42. Bauer G, Suess B (June 2006). "Engineered riboswitches as novel tools in molecular biology". Journal of Biotechnology. 124 (1): 4–11. doi:10.1016/j.jbiotec.2005.12.006. PMID   16442180.
  43. Dixon N, Duncan JN, Geerlings T, Dunstan MS, McCarthy JE, Leys D, Micklefield J (February 2010). "Reengineering orthogonally selective riboswitches". Proceedings of the National Academy of Sciences of the United States of America. 107 (7): 2830–2835. Bibcode:2010PNAS..107.2830D. doi: 10.1073/pnas.0911209107 . PMC   2840279 . PMID   20133756.
  44. Verhounig A, Karcher D, Bock R (April 2010). "Inducible gene expression from the plastid genome by a synthetic riboswitch". Proceedings of the National Academy of Sciences of the United States of America. 107 (14): 6204–6209. Bibcode:2010PNAS..107.6204V. doi: 10.1073/pnas.0914423107 . PMC   2852001 . PMID   20308585.
  45. Ketzer P, Kaufmann JK, Engelhardt S, Bossow S, von Kalle C, Hartig JS, Ungerechts G, Nettelbeck DM (February 2014). "Artificial riboswitches for gene expression and replication control of DNA and RNA viruses". Proceedings of the National Academy of Sciences of the United States of America. 111 (5): E554–562. Bibcode:2014PNAS..111E.554K. doi: 10.1073/pnas.1318563111 . PMC   3918795 . PMID   24449891.
  46. Strobel B, Klauser B, Hartig JS, Lamla T, Gantner F, Kreuz S (October 2015). "Riboswitch-mediated Attenuation of Transgene Cytotoxicity Increases Adeno-associated Virus Vector Yields in HEK-293 Cells". Molecular Therapy. 23 (10): 1582–1591. doi:10.1038/mt.2015.123. PMC   4817922 . PMID   26137851.

Further reading