Purine riboswitch

Last updated
Purine riboswitch
RF00167-rscape.svg
Identifiers
SymbolPurine
Rfam RF00167
Other data
RNA type Cis-reg; riboswitch
Domain(s) Bacteria
SO SO:0000035
PDB structures PDBe

A purine riboswitch is a sequence of ribonucleotides in certain messenger RNA (mRNA) that selectively binds to purine ligands via a natural aptamer domain. [1] This binding causes a conformational change in the mRNA that can affect translation by revealing an expression platform for a downstream gene, or by forming a translation-terminating stem-loop. [2] [3] [4] The ultimate effects of such translational regulation often take action to manage an abundance of the instigating purine, and might produce proteins that facilitate purine metabolism or purine membrane uptake. [5]

Contents

Binding properties

Purine riboswitches bind to their purine ligands via interactions at a three-way junction formed by junctional helix P1 and hairpin helices P2 and P3. [3] Associations that a purine makes when it is within this binding pocket stabilize the three-way junction, and support the ligand-bound conformation of the mRNA molecule. [6] The purine riboswitch can become saturated at concentrations as low as 5 nM, which reflects the need for gene expression to respond quickly and dynamically to changes in purine concentration. [7]

Despite the relative similarity of the purine-binding aptamer domain across different purine riboswitches, one binding pocket can still discriminate for a single type of purine ligand with high selectivity. [7] Critical to this sensitivity is a single difference in the secondary structure of ribonucleotides: in position 74 of the aptamer domain, it has been found that conversion of a cytosine to a uracil changes an aptamer from being guanine sensitive to being adenine sensitive, and vice versa. [7] Such a conversion is owed to the ability of a nucleotide in position 74 to Watson-Crick base pair with the ligand in the binding pocket, and cytosine and uracil's respective ability to preferentially hydrogen-bond with guanine or adenine. [7]

The effect of position 74 in determining ligand sensitivity Comparison of Binding Pocket Association for different Purine Riboswitches.gif
The effect of position 74 in determining ligand sensitivity

Adenine Riboswitch

A 3D representation of the adenine riboswitch. Adenosine riboswitch pdb-1y26.png
A 3D representation of the adenine riboswitch.

The Adenine Riboswitch selectively recognizes adenine, and contains a uracil ribonucleotide in position 74 of the adenine-binding aptamer domain. Some of the more frequently researched instances of this riboswitch are detailed below.

add

The add gene encodes adenosine deaminase, and the adenine riboswitch that is upstream exposes the gene's start codon and the Shine-Dalgarno sequence when adenine is present in the binding pocket. [6] This behavior facilitates adenosine deaminase translation, and in this way, the add adenosine riboswitch contributes to a metabolic negative feedback mechanism that regulates the amount of adenine present in the system.

Unbound and bound conformations of the adenine riboswitch 210-Adenine Riboswitch in Action-5e54 5swe.tiff
Unbound and bound conformations of the adenine riboswitch

Ligand-binding conformational changes

The add adenine riboswitch has shown three distinct stable conformations in the presence of adenine. [6] When unbound to adenine, the mRNA sequence converts between two different non-translatable conformations, one of which is able to accept adenine into the binding pocket and conform to the adenine-bound mRNA shape. [6] This three-stage mechanism is quite distinct from the standard two-stage explanation of riboswitch action, which assumes a single ligand-bound state and a single ligand-unbound state. This mechanistic uniqueness of the add adenine riboswitch may serve as a benefit for organisms like Vibrio vulnificus, whose varied habitats require a particularly nuanced metabolic sensitivity to a wide variety of environmental conditions.

The figure at right shows a space-fill drawing of an unbound state (left, from PDB file 5e54) and the state with adenine bound (right, from PDB file 5swe). The part colored pink forms a complete A-form RNA helix in the bound form, and the yellow part shifts position.

Magnesium and temperature dependence

At higher temperatures, conversion between different conformations of unbound add adenine riboswitch favors the form that is able to accept adenine into its binding pocket. [6] Higher temperatures also favor the conversion of this unbound riboswitch to the adenine-bound, start-sequence-exposed conformation. [6] The concentration of Magnesium ion has an influence on only the latter of these conformation changes, and favors the binding of adenine to the riboswitch. [6] The combination of these effects facilitates a more controlled translation of the add gene at lower temperatures: taking a portion of the unbound riboswitch and rendering it unable to bind adenine increases the sensitivity of the remaining portion to magnesium. [6]

pbuE

The pbuE gene encodes a purine base efflux pump. Binding of adenine to the pbuE adenine riboswitch disrupts the structure of a terminator stem that had been blocking access to the gene expression platform. [3] In this way, an abundance of adenine can instigate the process of adenine's efflux from a cell.

Ligand-binding conformational changes

Unlike the add adenine riboswitch, the pbuE adenine riboswitch appears to exist in one of two stable conformations. Binding of adenine causes the formation of an antiterminator, thus allowing transcription to finish to completion. [3] In the absence of adenine, the aptamer domain of the riboswitch instead associates with the riboswitch expression platform, leading to transcription termination. [3]

Guanine Riboswitch

A 3D representation of the guanine riboswitch. Guanosine riboswitch pdb-1y27.png
A 3D representation of the guanine riboswitch.

The Guanine Riboswitch selectively recognizes guanine, and contains a cytosine ribonucleotide in position 74 of the guanine-binding aptamer domain. One of the more frequently researched instances of this riboswitch is detailed below.

xpt

The xpt gene encodes a specific xanthine phosphoribosyltransferase protein, which is involved in purine metabolism. Unlike the add gene or the pbuE gene, ligand binding to the xpt guanine riboswitch serves as a translational off-switch. [8] The xpt guanine riboswitch aptamer is stabilized by guanine in a way that allows the riboswitch to more easily bind magnesium, which causes folding of the mRNA such that the xpt gene ceases to be translated. [9]

Practical utility

Like other riboswitches, purine riboswitches are found in the five prime untranslated region (5' UTR) of prokaryotic mRNA. [5] Since the function of this region is important to bacterial metabolism, purine riboswitches constitute a potentially useful drug target. [10] Moreover, the purine riboswitch is the only riboswitch so far that has been mutated to respond to non-natural ligands, opening up possibilities to use riboswitches as novel gene-expression tools. [11]

Related Research Articles

<span class="mw-page-title-main">Nucleotide</span> Biological molecules constituting nucleic acids

Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver.

<span class="mw-page-title-main">Xanthine</span> Chemical compound

Xanthine is a purine base found in most human body tissues and fluids, as well as in other organisms. Several stimulants are derived from xanthine, including caffeine, theophylline, and theobromine.

<span class="mw-page-title-main">Nucleobase</span> Nitrogen-containing biological compounds that form nucleosides

Nucleobases are nitrogen-containing biological compounds that form nucleosides, which, in turn, are components of nucleotides, with all of these monomers constituting the basic building blocks of nucleic acids. The ability of nucleobases to form base pairs and to stack one upon another leads directly to long-chain helical structures such as ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). Five nucleobases—adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U)—are called primary or canonical. They function as the fundamental units of the genetic code, with the bases A, G, C, and T being found in DNA while A, G, C, and U are found in RNA. Thymine and uracil are distinguished by merely the presence or absence of a methyl group on the fifth carbon (C5) of these heterocyclic six-membered rings. In addition, some viruses have aminoadenine (Z) instead of adenine. It differs in having an extra amine group, creating a more stable bond to thymine.

<span class="mw-page-title-main">Ribonucleotide</span> Nucleotide containing ribose as its pentose component

In biochemistry, a ribonucleotide is a nucleotide containing ribose as its pentose component. It is considered a molecular precursor of nucleic acids. Nucleotides are the basic building blocks of DNA and RNA. Ribonucleotides themselves are basic monomeric building blocks for RNA. Deoxyribonucleotides, formed by reducing ribonucleotides with the enzyme ribonucleotide reductase (RNR), are essential building blocks for DNA. There are several differences between DNA deoxyribonucleotides and RNA ribonucleotides. Successive nucleotides are linked together via phosphodiester bonds.

<span class="mw-page-title-main">Riboswitch</span>

In molecular biology, a riboswitch is a regulatory segment of a messenger RNA molecule that binds a small molecule, resulting in a change in production of the proteins encoded by the mRNA. Thus, an mRNA that contains a riboswitch is directly involved in regulating its own activity, in response to the concentrations of its effector molecule. The discovery that modern organisms use RNA to bind small molecules, and discriminate against closely related analogs, expanded the known natural capabilities of RNA beyond its ability to code for proteins, catalyze reactions, or to bind other RNA or protein macromolecules.

A nucleoside triphosphate is a nucleoside containing a nitrogenous base bound to a 5-carbon sugar, with three phosphate groups bound to the sugar. They are the molecular precursors of both DNA and RNA, which are chains of nucleotides made through the processes of DNA replication and transcription. Nucleoside triphosphates also serve as a source of energy for cellular reactions and are involved in signalling pathways.

<span class="mw-page-title-main">Cobalamin riboswitch</span>

Cobalamin riboswitch is a cis-regulatory element which is widely distributed in 5' untranslated regions of vitamin B12 (Cobalamin) related genes in bacteria.

<span class="mw-page-title-main">FMN riboswitch</span> Highly conserved RNA element

The FMN riboswitch is a highly conserved RNA element which is naturally occurring, and is found frequently in the 5'-untranslated regions of prokaryotic mRNAs that encode for flavin mononucleotide (FMN) biosynthesis and transport proteins. This element is a metabolite-dependent riboswitch that directly binds FMN in the absence of proteins, thus giving it the ability to regulate RNA expression by responding to changes in the concentration of FMN. In Bacillus subtilis, previous studies have shown that this bacterium utilizes at least two FMN riboswitches, where one controls translation initiation, and the other controls premature transcription termination. Regarding the second riboswitch in Bacilius subtilis, premature transcription termination occurs within the 5' untranslated region of the ribDEAHT operon, precluding access to the ribosome-binding site of ypaA mRNA. FMN riboswitches also have various magnesium and potassium ions dispersed throughout the nucleotide structure, some of which participate in binding of FMN.

<span class="mw-page-title-main">Glycine riboswitch</span> RNA element

The bacterial glycine riboswitch is an RNA element that can bind the amino acid glycine. Glycine riboswitches usually consist of two metabolite-binding aptamer domains with similar structures in tandem. The aptamers were originally thought to cooperatively bind glycine to regulate the expression of downstream genes. In Bacillus subtilis, this riboswitch is found upstream of the gcvT operon which controls glycine degradation. It is thought that when glycine is in excess it will bind to both aptamers to activate these genes and facilitate glycine degradation.

<span class="mw-page-title-main">Lysine riboswitch</span>

The Lysine riboswitch is a metabolite binding RNA element found within certain messenger RNAs that serve as a precision sensor for the amino acid lysine. Allosteric rearrangement of mRNA structure is mediated by ligand binding, and this results in modulation of gene expression. Lysine riboswitch are most abundant in Bacillota and Gammaproteobacteria where they are found upstream of a number of genes involved in lysine biosynthesis, transport and catabolism. The lysine riboswitch has also been identified independently and called the L box.

<span class="mw-page-title-main">PreQ1 riboswitch</span>

The PreQ1-I riboswitch is a cis-acting element identified in bacteria which regulates expression of genes involved in biosynthesis of the nucleoside queuosine (Q) from GTP. PreQ1 (pre-queuosine1) is an intermediate in the queuosine pathway, and preQ1 riboswitch, as a type of riboswitch, is an RNA element that binds preQ1. The preQ1 riboswitch is distinguished by its unusually small aptamer, compared to other riboswitches. Its atomic-resolution three-dimensional structure has been determined, with the PDB ID 2L1V.

<span class="mw-page-title-main">SAM riboswitch (S-box leader)</span>

The SAM riboswitch is found upstream of a number of genes which code for proteins involved in methionine or cysteine biosynthesis in Gram-positive bacteria. Two SAM riboswitches in Bacillus subtilis that were experimentally studied act at the level of transcription termination control. The predicted secondary structure consists of a complex stem-loop region followed by a single stem-loop terminator region. An alternative and mutually exclusive form involves bases in the 3' segment of helix 1 with those in the 5' region of helix 5 to form a structure termed the anti-terminator form. When SAM is unbound, the anti-terminator sequence sequesters the terminator sequence so the terminator is unable to form, allowing the polymerase to read-through the downstream gene. When S-Adenosyl methionine (SAM) is bound to the aptamer, the anti-terminator is sequestered by an anti-anti-terminator; the terminator forms and terminates the transcription. However, many SAM riboswitches are likely to regulate gene expression at the level of translation.

<span class="mw-page-title-main">TPP riboswitch</span> RNA secondary structure

The TPP riboswitch, also known as the THI element and Thi-box riboswitch, is a highly conserved RNA secondary structure. It serves as a riboswitch that binds thiamine pyrophosphate (TPP) directly and modulates gene expression through a variety of mechanisms in archaea, bacteria and eukaryotes. TPP is the active form of thiamine (vitamin B1), an essential coenzyme synthesised by coupling of pyrimidine and thiazole moieties in bacteria. The THI element is an extension of a previously detected thiamin-regulatory element, the thi box, there is considerable variability in the predicted length and structures of the additional and facultative stem-loops represented in dark blue in the secondary structure diagram Analysis of operon structures has identified a large number of new candidate thiamin-regulated genes, mostly transporters, in various prokaryotic organisms. The x-ray crystal structure of the TPP riboswitch aptamer has been solved.

<span class="mw-page-title-main">PreQ1-II riboswitch</span> Class of riboswitches

PreQ1-II riboswitches form a class of riboswitches that specifically bind pre-queuosine1 (PreQ1), a precursor of the modified nucleoside queuosine. They are found in certain species of Streptococcus and Lactococcus, and were originally identified as a conserved RNA secondary structure called the "COG4708 motif". All known members of this riboswitch class appear to control members of COG4708 genes. These genes are predicted to encode membrane-bound proteins and have been proposed to be a transporter of preQ1, or a related metabolite, based on their association with preQ1-binding riboswitches. PreQ1-II riboswitches have no apparent similarities in sequence or structure to preQ1-I riboswitches, a previously discovered class of preQ1-binding riboswitches. PreQ1 thus joins S-adenosylmethionine as the second metabolite to be found that is the ligand of more than one riboswitch class.

The Magnesium responsive RNA element, not to be confused with the completely distinct M-box riboswitch, is a cis-regulatory element that regulates the expression of the magnesium transporter protein MgtA. It is located in the 5' UTR of this gene. The mechanism for the potential magnesium-sensing capacity of this RNA is still unclear, though a recent report suggests that the RNA element targets the mgtA transcript for degradation by RNase E when cells are grown in high Mg2+ environments.

<span class="mw-page-title-main">Mesoplasma florum riboswitch</span>

Riboswitches are cis-acting regulatory elements located within the 5’UTR of mRNA transcripts. These regulatory elements bind small molecules which results in a conformational change within the 5’UTR of the mRNA. The changes in the mRNA secondary structure subsequently result in changes in the expression of the adjacent open reading frame.

<span class="mw-page-title-main">Fluoride riboswitch</span> Fluoride-binding RNA structure

The fluoride riboswitch is a conserved RNA structure identified by bioinformatics in a wide variety of bacteria and archaea. These RNAs were later shown to function as riboswitches that sense fluoride ions. These "fluoride riboswitches" increase expression of downstream genes when fluoride levels are elevated, and the genes are proposed to help mitigate the toxic effects of very high levels of fluoride.

<span class="mw-page-title-main">Glutamine riboswitch</span> Glutamine-binding RNA structure

The glutamine riboswitch is a conserved RNA structure that was predicted by bioinformatics. It is present in a variety of lineages of cyanobacteria, as well as some phages that infect cyanobacteria. It is also found in DNA extracted from uncultivated bacteria living in the ocean that are presumably species of cyanobacteria.

<span class="mw-page-title-main">Tetrahydrofolate riboswitch</span>

Tetrahydrofolate riboswitches are a class of homologous RNAs in certain bacteria that bind tetrahydrofolate (THF). It is almost exclusively located in the probable 5' untranslated regions of protein-coding genes, and most of these genes are known to encode either folate transporters or enzymes involved in folate metabolism. For these reasons it was inferred that the RNAs function as riboswitches. THF riboswitches are found in a variety of Bacillota, specifically the orders Clostridiales and Lactobacillales, and more rarely in other lineages of bacteria. The THF riboswitch was one of many conserved RNA structures found in a project based on comparative genomics. The 3-d structure of the tetrahydrofolate riboswitch has been solved by separate groups using X-ray crystallography. These structures were deposited into the Protein Data Bank under accessions 3SD1 and 3SUX, with other entries containing variants.

SAM-V riboswitch is the fifth known riboswitch to bind S-adenosyl methionine (SAM). It was first discovered in the marine bacterium Candidatus Pelagibacter ubique and can also be found in marine metagenomes. SAM-V features a similar consensus sequence and secondary structure as the binding site of SAM-II riboswitch, but bioinformatics scans cluster the two aptamers independently. These similar binding pockets suggest that the two riboswitches have undergone convergent evolution.

References

  1. Mandal, M; Boese B; Barrick JE; Winkler WC; Breaker RR (2003). "Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria". Cell. 113 (5): 577–586. doi: 10.1016/S0092-8674(03)00391-X . PMID   12787499.
  2. Mandal, M; Breaker RR (2004). "Adenine riboswitches and gene activation by disruption of a transcription terminator". Nat Struct Mol Biol. 11 (1): 29–35. doi:10.1038/nsmb710. PMID   14718920. S2CID   13287755.
  3. 1 2 3 4 5 6 Thirumalai, D; Lin J (2008). "Relative Stability of Helices Determines the Folding Landscape of Adenine Riboswitch Aptamers". Journal of the American Chemical Society. 130 (43): 14080–14081. doi:10.1021/ja8063638. PMID   18828635.
  4. Batey, RT; Gilbert SD; Montange RK (2004). "Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine". Nature. 432 (7015): 411–415. Bibcode:2004Natur.432..411B. doi:10.1038/nature03037. PMID   15549109. S2CID   2462025.
  5. 1 2 Sengupta, S; Singh, P (2012). "Phylogenetic Analysis and Comparative Genomics of Purine Riboswitch Distribution in Prokaryotes". Evolutionary Bioinformatics. 8: 589–609. doi:10.4137/EBO.S10048. PMC   3499989 . PMID   23170063.
  6. 1 2 3 4 5 6 7 8 Reining, Anke; Nozinovic, Senada; Schlepckow, Kai; Buhr, Florian; Fürtig, Boris; Schwalbe, Harald (2013). "Three-state Mechanism Couples Ligand and Temperature Sensing in Riboswitches". Nature. 499 (7458): 355–360. Bibcode:2013Natur.499..355R. doi:10.1038/nature12378. PMID   23842498. S2CID   4414719.
  7. 1 2 3 4 5 Serganov A, Yuan YR, Pikovskaya O, Polonskaia A, Malinina L, Phan AT, Hobartner C, Micura R, Breaker RR, Patel DJ (2004). "Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs". Chem Biol. 11 (12): 1729–1741. doi:10.1016/j.chembiol.2004.11.018. PMC   4692365 . PMID   15610857.
  8. Schwalbe, H; Wacker A; Buck J; Richter C; Wohnert J (2011). "Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy". Nucleic Acids Research. 39 (15): 6802–6812. doi:10.1093/nar/gkr238. PMC   3159443 . PMID   21576236.
  9. Silverman, S; Brenner MD; Scanlan MS; ahas MK; Ha T (2010). "Multivector Fluorescence Analysis of the xpt Guanine Riboswitch Aptamer Domain and the Conformational Role of Guanine". Biochemistry. 49 (8): 1596–1605. doi:10.1021/bi9019912. PMC   2854158 . PMID   20108980.
  10. Silverman, Richard (2004). The Organic Chemistry of Drug Disign and Drug Acion . Elsevier Academic Press. ISBN   978-0-12-643732-4.
  11. Dixon N, Duncan, J.N., et al. (January 2010). "Reengineering orthogonally selective riboswitches" (PDF). PNAS. 107 (7): 2830–2835. Bibcode:2010PNAS..107.2830D. doi: 10.1073/pnas.0911209107 . PMC   2840279 . PMID   20133756.