Xanthine phosphoribosyltransferase

Last updated
xanthine phosphoribosyltransferase
Identifiers
EC no. 2.4.2.22
CAS no. 9023-10-3
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a xanthine phosphoribosyltransferase (EC 2.4.2.22) is an enzyme that catalyzes the chemical reaction

XMP + diphosphate 5-phospho-alpha-D-ribose 1-diphosphate + xanthine

Thus, the two substrates of this enzyme are XMP and diphosphate, whereas its two products are 5-phospho-alpha-D-ribose 1-diphosphate and xanthine.

This enzyme belongs to the family of glycosyltransferases, specifically the pentosyltransferases. The systematic name of this enzyme class is XMP:diphosphate 5-phospho-alpha-D-ribosyltransferase. Other names in common use include Xan phosphoribosyltransferase, xanthosine 5'-phosphate pyrophosphorylase, xanthylate pyrophosphorylase, xanthylic pyrophosphorylase, XMP pyrophosphorylase, 5-phospho-alpha-D-ribose-1-diphosphate:xanthine, phospho-D-ribosyltransferase, 9-(5-phospho-beta-D-ribosyl)xanthine:diphosphate, and 5-phospho-alpha-D-ribosyltransferase. This enzyme participates in purine metabolism.

Structural studies

As of late 2007, 6 structures have been solved for this class of enzymes, with PDB accession codes 1A95, 1A96, 1A97, 1A98, 1NUL, and 2FXV.

Related Research Articles

A salvage pathway is a pathway in which a biological product is produced from intermediates in the degradative pathway of its own or a similar substance. The term often refers to nucleotide salvage in particular, in which nucleotides are synthesized from intermediates in their degradative pathway.

<span class="mw-page-title-main">Phosphoribosyl pyrophosphate</span> Chemical compound

Phosphoribosyl pyrophosphate (PRPP) is a pentose phosphate. It is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, as well as in pyrimidine nucleotide formation. Hence it is a building block for DNA and RNA. The vitamins thiamine and cobalamin, and the amino acid tryptophan also contain fragments derived from PRPP. It is formed from ribose 5-phosphate (R5P) by the enzyme ribose-phosphate diphosphokinase:

<span class="mw-page-title-main">Nucleic acid metabolism</span> Process

Nucleic acid metabolism is a collective term that refers to the variety of chemical reactions by which nucleic acids are either synthesized or degraded. Nucleic acids are polymers made up of a variety of monomers called nucleotides. Nucleotide synthesis is an anabolic mechanism generally involving the chemical reaction of phosphate, pentose sugar, and a nitrogenous base. Degradation of nucleic acids is a catabolic reaction and the resulting parts of the nucleotides or nucleobases can be salvaged to recreate new nucleotides. Both synthesis and degradation reactions require multiple enzymes to facilitate the event. Defects or deficiencies in these enzymes can lead to a variety of diseases.

Purine metabolism refers to the metabolic pathways to synthesize and break down purines that are present in many organisms.

In enzymology, a S-methyl-5-thioribose-1-phosphate isomerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Anthranilate phosphoribosyltransferase</span> InterPro Family

In enzymology, an anthranilate phosphoribosyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">ATP phosphoribosyltransferase</span> Class of enzymes

In enzymology, an ATP phosphoribosyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a dioxotetrahydropyrimidine phosphoribosyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Nicotinate-nucleotide—dimethylbenzimidazole phosphoribosyltransferase</span> Class of enzymes

In enzymology, a nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Nicotinate-nucleotide diphosphorylase (carboxylating)</span> Class of enzymes

In enzymology, a nicotinate-nucleotide diphosphorylase (carboxylating) (EC 2.4.2.19) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Nicotinate phosphoribosyltransferase</span>

In enzymology, a nicotinate phosphoribosyltransferase (EC 6.3.4.21) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glucose-1-phosphate adenylyltransferase</span>

In enzymology, a glucose-1-phosphate adenylyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a glucose-1-phosphate cytidylyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a glucuronate-1-phosphate uridylyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a mannose-1-phosphate guanylyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a nucleoside-triphosphate-aldose-1-phosphate nucleotidyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a ribose 1,5-bisphosphate phosphokinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UDP-N-acetylglucosamine diphosphorylase</span> Class of enzymes

In enzymology, an UDP-N-acetylglucosamine diphosphorylase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UTP—hexose-1-phosphate uridylyltransferase</span> Class of enzymes

In enzymology, an UTP—hexose-1-phosphate uridylyltransferase is an enzyme that catalyzes the chemical reaction

Decaprenyl-phosphate phosphoribosyltransferase is an enzyme with systematic name trans,octacis-decaprenylphospho-beta-D-ribofuranose 5-phosphate:diphosphate phospho-alpha-D-ribosyltransferase. This enzyme catalyses the following chemical reaction

References