Deoxyguanosine

Last updated
Deoxyguanosine [1]
Desoxyguanosin.svg
Deoxyadenosine-3D-balls.png
Names
IUPAC name
2-Amino-9-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-3H-purin-6-one
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.012.278 OOjs UI icon edit-ltr-progressive.svg
MeSH Deoxyguanosine
PubChem CID
UNII
  • InChI=1S/C10H13N5O4/c11-10-13-8-7(9(18)14-10)12-3-15(8)6-1-4(17)5(2-16)19-6/h3-6,16-17H,1-2H2,(H3,11,13,14,18)/t4-,5+,6+/m0/s1 Yes check.svgY
    Key: YKBGVTZYEHREMT-KVQBGUIXSA-N Yes check.svgY
  • InChI=1/C10H13N5O4/c11-10-13-8-7(9(18)14-10)12-3-15(8)6-1-4(17)5(2-16)19-6/h3-6,16-17H,1-2H2,(H3,11,13,14,18)/t4-,5+,6+/m0/s1
    Key: YKBGVTZYEHREMT-KVQBGUIXBI
  • c1nc2c(n1[C@H]3C[C@@H]([C@H](O3)CO)O)[nH]c(nc2=O)N
Properties
C10H13N5O4
Molar mass 267.245 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

Deoxyguanosine is composed of the purine nucleobase guanine linked by its N9 nitrogen to the C1 carbon of deoxyribose. It is similar to guanosine, but with one hydroxyl group removed from the 2' position of the ribose sugar (making it deoxyribose). If a phosphate group is attached at the 5' position, it becomes deoxyguanosine monophosphate.

Deoxyguanosine is one of the four deoxyribonucleosides that make up DNA. [2]

See also

Related Research Articles

Guanosine

Guanosine is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine can be phosphorylated to become guanosine monophosphate (GMP), cyclic guanosine monophosphate (cGMP), guanosine diphosphate (GDP), and guanosine triphosphate (GTP). These forms play important roles in various biochemical processes such as synthesis of nucleic acids and proteins, photosynthesis, muscle contraction, and intracellular signal transduction (cGMP). When guanine is attached by its N9 nitrogen to the C1 carbon of a deoxyribose ring it is known as deoxyguanosine.

Monosaccharides, also called simple sugars, are the simplest form of sugar and the most basic units (monomers) of carbohydrates. The general formula is C
n
H
2n
O
n
, albeit not all molecules fitting this formula are carbohydrates. They are usually colorless, water-soluble, and crystalline solids. Contrary to their name (sugars), only some monosaccharides have a sweet taste.

Nucleic acid Class of large biomolecules essential to all known life

Nucleic acids are the biopolymers, or large biomolecules, essential to all known forms of life. The term nucleic acid is the overall name for DNA and RNA. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. If the sugar is a compound ribose, the polymer is RNA ; if the sugar is derived from ribose as deoxyribose, the polymer is DNA . Nucleic acids are naturally occurring chemical compounds that serve as the primary information-carrying molecules in cells. They play an especially important role in directing protein synthesis. The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Nucleic acids are found in abundance in all living things, where they create, encode, and then store information of every living cell of every life-form on Earth. In turn, they function to transmit and express that information inside and outside the cell nucleus—to the interior operations of the cell and ultimately to the next generation of each living organism. The encoded information is contained and conveyed via the nucleic acid sequence, which provides the 'ladder-step' ordering of nucleotides within the molecules of RNA and DNA.

In chemistry, a pentose is a monosaccharide with five carbon atoms. The chemical formula of all pentoses is C
5
H
10
O
5
, and their molecular weight is 150.13 g/mol.

Deoxyribose, or more precisely 2-deoxyribose, is a monosaccharide with idealized formula H−(C=O)−(CH2)−(CHOH)3−H. Its name indicates that it is a deoxy sugar, meaning that it is derived from the sugar ribose by loss of an oxygen atom. Since the pentose sugars arabinose and ribose only differ by the stereochemistry at C2′, 2-deoxyribose and 2-deoxyarabinose are equivalent, although the latter term is rarely used because ribose, not arabinose, is the precursor to deoxyribose.

Nucleoside

Nucleosides are glycosylamines that can be thought of as nucleotides without a phosphate group. A nucleoside consists simply of a nucleobase and a five-carbon sugar whereas a nucleotide is composed of a nucleobase, a five-carbon sugar, and one or more phosphate groups. In a nucleoside, the anomeric carbon is linked through a glycosidic bond to the N9 of a purine or the N1 of a pyrimidine. Examples of nucleosides include cytidine, uridine, adenosine, guanosine, thymidine and inosine.

Deoxyuridine

Deoxyuridine (dU) is a compound and a nucleoside. It belongs to a class of compounds known as Pyrimidine 2'-deoxyribonucleosides and closely resembles the chemical composition of uridine but without the presence of the 2' hydroxyl group. Idoxuridine and Trifluridine are variants of deoxyuridine used as antiviral drugs. They are similar enough to be incorporated as part of DNA replication, but they possess side groups on the uracil component (an iodine and a CF3 group, respectively), that prevent base pairing. A known use of dU is as a precursor in the synthesis of Edoxudine.

Garden District, New Orleans New Orleans neighborhood in Louisiana, United States

The Garden District is a neighborhood of the city of New Orleans, Louisiana, United States. A subdistrict of the Central City/Garden District Area, its boundaries as defined by the City Planning Commission are: St. Charles Avenue to the north, 1st Street to the east, Magazine Street to the south, and Toledano Street to the west. The National Historic Landmark district extends a little farther.

Valganciclovir Antiviral medication

Valganciclovir, sold under the brand name Valcyte among others, is an antiviral medication used to treat cytomegalovirus (CMV) infection in those with HIV/AIDS or following organ transplant. It is often used long term as it only suppresses rather than cures the infection. Valganciclovir is taken by mouth.

Depurination

Depurination is a chemical reaction of purine deoxyribonucleosides, deoxyadenosine and deoxyguanosine, and ribonucleosides, adenosine or guanosine, in which the β-N-glycosidic bond is hydrolytically cleaved releasing a nucleic base, adenine or guanine, respectively. The second product of depurination of deoxyribonucleosides and ribonucleosides is sugar, 2'-deoxyribose and ribose, respectively. More complex compounds containing nucleoside residues, nucleotides and nucleic acids, also suffer from depurination. Deoxyribonucleosides and their derivatives are substantially more prone to depurination than their corresponding ribonucleoside counterparts. Loss of pyrimidine bases occurs by a similar mechanism, but at a substantially lower rate.

A deoxyribonucleotide is a nucleotide that contains deoxyribose. They are the monomeric units of the informational biopolymer, deoxyribonucleic acid (DNA). Each deoxyribonucleotide comprises three parts: a deoxyribose sugar (monosaccharide), a nitrogenous base, and one phosphoryl group. The nitrogenous bases are either purines or pyrimidines, heterocycles whose structures support the specific base-pairing interactions that allow nucleic acids to carry information. The base is always bonded to the 1'-carbon of the deoxyribose, an analog of ribose in which the hydroxyl group of the 2'-carbon is replaced with a hydrogen atom. The third component, the phosphoryl group, attaches to the deoxyribose monomer via the hydroxyl group on the 5'-carbon of the sugar.

Deoxy sugar

Deoxy sugars are sugars that have had a hydroxyl group replaced with a hydrogen atom.

Crosslinking of DNA

In genetics, crosslinking of DNA occurs when various exogenous or endogenous agents react with two nucleotides of DNA, forming a covalent linkage between them. This crosslink can occur within the same strand (intrastrand) or between opposite strands of double-stranded DNA (interstrand). These adducts interfere with cellular metabolism, such as DNA replication and transcription, triggering cell death. These crosslinks can, however, be repaired through excision or recombination pathways.

Myophosphorylase Muscle enzyme involved in glycogen breakdown

Myophosphorylase or glycogen phosphorylase, muscle associated (PYGM) is the muscle isoform of the enzyme glycogen phosphorylase and is encoded by the PYGM gene. This enzyme helps break down glycogen into glucose-1-phosphate, so it can be used within the muscle cell. Mutations in this gene are associated with McArdle disease, a glycogen storage disease of muscle.

Dehydroandrosterone

Dehydroandrosterone (DHA), or 5-dehydroandrosterone (5-DHA), also known as isoandrostenolone, as well as androst-5-en-3α-ol-17-one, is an endogenous androgen steroid hormone. It is the 3α-epimer of dehydroepiandrosterone and the 5(6)-dehydrogenated and non-5α-reduced analogue of androsterone (5α-androstan-3α-ol-17-one). DHA is produced in and secreted from the adrenal glands, along with other weak androgens like DHEA, androstenediol, and androstenedione.

Human Metabolome Database

The Human Metabolome Database (HMDB) is a comprehensive, high-quality, freely accessible, online database of small molecule metabolites found in the human body. Created by the Human Metabolome Project funded by Genome Canada. One of the first dedicated metabolomics databases, the HMDB facilitates human metabolomics research, including the identification and characterization of human metabolites using NMR spectroscopy, GC-MS spectrometry and LC/MS spectrometry. To aid in this discovery process, the HMDB contains three kinds of data: 1) chemical data, 2) clinical data, and 3) molecular biology/biochemistry data. The chemical data includes 41,514 metabolite structures with detailed descriptions along with nearly 10,000 NMR, GC-MS and LC/MS spectra.

Etiocholanolone glucuronide

Etiocholanolone glucuronide (ETIO-G) is an endogenous, naturally occurring metabolite of testosterone. It is formed in the liver from etiocholanolone by UDP-glucuronyltransferases. ETIO-G has much higher water solubility than etiocholanolone and is eventually excreted in the urine via the kidneys. Along with androsterone glucuronide, it is one of the major inactive metabolites of testosterone.

11β-Hydroxyprogesterone

11β-Hydroxyprogesterone (11β-OHP), also known as 21-deoxycorticosterone, as well as 11β-hydroxypregn-4-ene-3,20-dione, is a naturally occurring, endogenous steroid and derivative of progesterone. It is a potent mineralocorticoid. Syntheses of 11β-OHP from progesterone is catalyzed by the steroid 11β-hydroxylase (CYP11B1) enzyme, and, to a lesser extent, by the aldosterone synthase enzyme (CYP11B2).

Androsterone sulfate

Androsterone sulfate, also known as 3α-hydroxy-5α-androstan-17-one 3α-sulfate, is an endogenous, naturally occurring steroid and one of the major urinary metabolites of androgens. It is a steroid sulfate which is formed from sulfation of androsterone by the steroid sulfotransferase SULT2A1 and can be desulfated back into androsterone by steroid sulfatase.

The Historical Marker Database (HMdb.org) is an online database that documents locations of numerous historical markers in the United States as well as other countries. The database was first launched in 2006 by computer programmer J. J. Prats.

References

  1. "2'-deoxyguanosine". PubChem Compound Database. National Center for Biotechnology Information. 24 December 2016. Archived from the original on 2 January 2017. Retrieved 2 January 2017.
  2. "Human Metabolome Database (HMDB) metabocard for Deoxyguanosine (HMDB0000085)".