Doublecortin

Last updated
DCX
Protein DCX PDB 1mjd.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases DCX , DBCN, DC, LISX, SCLH, XLIS, doublecortin
External IDs OMIM: 300121 MGI: 1277171 HomoloGene: 7683 GeneCards: DCX
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001110222
NM_001110223
NM_001110224
NM_010025

RefSeq (protein)

NP_001103692
NP_001103693
NP_001103694
NP_034155

Location (UCSC) Chr X: 111.29 – 111.41 Mb Chr X: 142.64 – 142.72 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Neuronal migration protein doublecortin, also known as doublin or lissencephalin-X is a protein that in humans is encoded by the DCX gene. [5]

Function

Doublecortin expression in the rat dentate gyrus, 21st postnatal day. Oomen et al., 2009. Doublecortin expression.png
Doublecortin expression in the rat dentate gyrus, 21st postnatal day. Oomen et al., 2009.

Doublecortin (DCX) is a microtubule-associated protein expressed by neuronal precursor cells and immature neurons in embryonic and adult cortical structures. Neuronal precursor cells begin to express DCX while actively dividing, and their neuronal daughter cells continue to express DCX for 2–3 weeks as the cells mature into neurons. Downregulation of DCX begins after 2 weeks, and occurs at the same time that these cells begin to express NeuN, a neuronal marker. [7]

Due to the nearly exclusive expression of DCX in developing neurons, this protein has been used increasingly as a marker for neurogenesis. Indeed, levels of DCX expression increase in response to exercise, [8] and that increase occurs in parallel with increased BrdU labeling, which is currently a "gold standard" in measuring neurogenesis.

Doublecortin was found to bind to the microtubule cytoskeleton. In vivo and in vitro assays show that Doublecortin stabilizes microtubules and causes bundling. [9] Doublecortin is a basic protein with an iso-electric point of 10 typical of microtubule-binding proteins.


Knock out mouse

Double layer hippocampus seen in Doublecortin knock out mice (right panels) compared to the normal hippocampus in wild type mice (left panels). Figure extracted from the work of the laboratory of Fiona Francis Morphological Abnormalities in the Dcx KO Hippocampus.png
Double layer hippocampus seen in Doublecortin knock out mice (right panels) compared to the normal hippocampus in wild type mice (left panels). Figure extracted from the work of the laboratory of Fiona Francis

In mice where the Doublecortin gene has been knocked out, cortical layers are still correctly formed. However, the hippocampi of these mice show disorganisation in the CA3 region. The normally single layer of pyramidal cells in mutants is seen as a double layer. These mice also have different behavior than their wild type littermates and are epileptic. [10]

Structure

Doublecortin
PDB 1uf0 EBI.jpg
solution structure of the N-terminal dcx domain of human doublecortin-like kinase
Identifiers
SymbolDCX
Pfam PF03607
InterPro IPR003533
SCOP2 1mfw / SCOPe / SUPFAM
CDD cd01617
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

The detailed sequence analysis of Doublecortin and Doublecortin-like proteins allowed the identification of a tandem repeat of evolutionarily conserved Doublecortin (DC) domains. These domains are found in the N terminus of proteins and consists of tandemly repeated copies of an around 80 amino acids region. It has been suggested that the first DC domain of Doublecortin binds tubulin and enhances microtubule polymerisation. [11]

Doublecortin has been shown to influence the structure of microtubules. Microtubule nucleated in vitro in the presence of Doublecortin have almost exclusively 13 protofilaments, whereas microtubule nucleated without Doublecortin are present in a range of different sizes.

Interactions

Doublecortin has been shown to interact with PAFAH1B1. [12]

Clinical significance

Doublecortin is mutated in X-linked lissencephaly and the double cortex syndrome, and the clinical manifestations are sex-linked. In males, X-linked lissencephaly produces a smooth brain due to lack of migration of immature neurons, which normally promote folding of the brain surface. Double cortex syndrome is characterized by abnormal migration of neural tissue during development which results in two bands of misplaced neurons within the subcortical white, generating two cortices, giving the name to the syndrome; this finding generally occurs in females. [13] The mutation was discovered by Joseph Gleeson and Christopher A. Walsh in Boston. [14] [15] At least 49 disease-causing mutations in this gene have been discovered. [16]

See also

Related Research Articles

<span class="mw-page-title-main">Lissencephaly</span> Medical condition

Lissencephaly is a set of rare brain disorders whereby the whole or parts of the surface of the brain appear smooth. It is caused by defective neuronal migration during the 12th to 24th weeks of gestation resulting in a lack of development of brain folds (gyri) and grooves (sulci). It is a form of cephalic disorder. Terms such as agyria and pachygyria are used to describe the appearance of the surface of the brain.

Pachygyria is a congenital malformation of the cerebral hemisphere. It results in unusually thick convolutions of the cerebral cortex. Typically, children have developmental delay and seizures, the onset and severity depending on the severity of the cortical malformation. Infantile spasms are common in affected children, as is intractable epilepsy.

<span class="mw-page-title-main">Treacle protein</span> Protein-coding gene in the species Homo sapiens

Treacle protein is a protein that in humans is encoded by the TCOF1 gene.

<span class="mw-page-title-main">Gray matter heterotopia</span> Group of neurological disorders

Gray matter heterotopia is a neurological disorder caused by gray matter being located in an atypical location in the brain.

<span class="mw-page-title-main">PAFAH1B1</span> Protein-coding gene in the species Homo sapiens

Platelet-activating factor acetylhydrolase IB subunit alpha is an enzyme that in humans is encoded by the PAFAH1B1 gene. The protein is often referred to as Lis1 and plays an important role in regulating the motor protein Dynein.

<span class="mw-page-title-main">WFS1</span> Protein-coding gene in the species Homo sapiens

Wolframin is a protein that in humans is encoded by the WFS1 gene.

<span class="mw-page-title-main">Tubulin alpha-1A chain</span> Protein-coding gene in the species Homo sapiens

Tubulin alpha-1A chain is a protein that in humans is encoded by the TUBA1A gene.

<span class="mw-page-title-main">Eyes absent homolog 1</span> Protein-coding gene in the species Homo sapiens

Eyes absent homolog 1 is a protein that in humans is encoded by the EYA1 gene.

<span class="mw-page-title-main">FLNB</span> Protein-coding gene in the species Homo sapiens

Filamin B, beta (FLNB), also known as Filamin B, beta , is a cytoplasmic protein which in humans is encoded by the FLNB gene.

<span class="mw-page-title-main">GJB3</span> Mammalian protein found in Homo sapiens

Gap junction beta-3 protein (GJB3), also known as connexin 31 (Cx31) — is a protein that in humans is encoded by the GJB3 gene.

<span class="mw-page-title-main">NDE1</span> Protein-coding gene in the species Homo sapiens

Nuclear distribution protein nudE homolog 1 is a protein that in humans is encoded by the NDE1 gene.

<span class="mw-page-title-main">OFD1</span> Mammalian protein found in Homo sapiens

Oral-facial-digital syndrome 1 protein is a protein that in humans is encoded by the OFD1 gene.

<span class="mw-page-title-main">CLN5</span> Protein-coding gene in humans

Ceroid-lipofuscinosis neuronal protein 5 is a protein that in humans is encoded by the CLN5 gene.

<span class="mw-page-title-main">KATNB1</span> Protein-coding gene in the species Homo sapiens

Katanin p80 WD40-containing subunit B1 is a protein that in humans is encoded by the KATNB1 gene.

<span class="mw-page-title-main">TRIM32</span> Protein-coding gene in the species Homo sapiens

Tripartite motif-containing protein 32 is a protein that in humans is encoded by the TRIM32 gene. Since its discovery in 1995, TRIM32 has been shown to be implicated in a number of diverse biological pathways.

<span class="mw-page-title-main">DCLK1</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase DCLK1 is an enzyme that in humans is encoded by the DCLK1 gene.

<span class="mw-page-title-main">Dentatorubral–pallidoluysian atrophy</span> Congenital disorder of nervous system

Dentatorubral–pallidoluysian atrophy (DRPLA) is an autosomal dominant spinocerebellar degeneration caused by an expansion of a CAG repeat encoding a polyglutamine tract in the atrophin-1 protein. It is also known as Haw River Syndrome and Naito–Oyanagi disease. Although this condition was perhaps first described by Smith et al. in 1958, and several sporadic cases have been reported from Western countries, this disorder seems to be very rare except in Japan.

The development of the cerebral cortex, known as corticogenesis is the process during which the cerebral cortex of the brain is formed as part of the development of the nervous system of mammals including its development in humans. The cortex is the outer layer of the brain and is composed of up to six layers. Neurons formed in the ventricular zone migrate to their final locations in one of the six layers of the cortex. The process occurs from embryonic day 10 to 17 in mice and between gestational weeks seven to 18 in humans.

Cajal–Retzius cells are a heterogeneous population of morphologically and molecularly distinct reelin-producing cell types in the marginal zone/layer I of the developmental cerebral cortex and in the immature hippocampus of different species and at different times during embryogenesis and postnatal life.

<span class="mw-page-title-main">Neurotubule</span>

Neurotubules are microtubules found in neurons in nervous tissues. Along with neurofilaments and microfilaments, they form the cytoskeleton of neurons. Neurotubules are undivided hollow cylinders that are made up of tubulin protein polymers and arrays parallel to the plasma membrane in neurons. Neurotubules have an outer diameter of about 23 nm and an inner diameter, also known as the central core, of about 12 nm. The wall of the neurotubules is about 5 nm in width. There is a non-opaque clear zone surrounding the neurotubule and it is about 40 nm in diameter. Like microtubules, neurotubules are greatly dynamic and the length of them can be adjusted by polymerization and depolymerization of tubulin.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000077279 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000031285 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. EntrezGene 1641
  6. Oomen CA, Girardi CE, Cahyadi R, Verbeek EC, Krugers H, Joëls M, Lucassen PJ (2009). "Opposite effects of early maternal deprivation on neurogenesis in male versus female rats". PLOS ONE. 4 (1): e3675. Bibcode:2009PLoSO...4.3675O. doi: 10.1371/journal.pone.0003675 . PMC   2629844 . PMID   19180242.
  7. Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (December 2003). "Transient expression of doublecortin during adult neurogenesis". J. Comp. Neurol. 467 (1): 1–10. doi:10.1002/cne.10874. PMID   14574675. S2CID   25315374.
  8. Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L (January 2005). "Doublecortin expression levels in adult brain reflect neurogenesis". Eur. J. Neurosci. 21 (1): 1–14. doi:10.1111/j.1460-9568.2004.03813.x. PMID   15654838. S2CID   45893767.
  9. Horesh D, Sapir T, Francis F, Wolf SG, Caspi M, Elbaum M, Chelly J, Reiner O (September 1999). "Doublecortin, a stabilizer of microtubules". Hum. Mol. Genet. 8 (9): 1599–610. doi: 10.1093/hmg/8.9.1599 . PMID   10441322.
  10. Nosten-Bertrand M, Kappeler C, Dinocourt C, Denis C, Germain J, Phan Dinh Tuy F, Verstraeten S, Alvarez C, Métin C, Chelly J, Giros B, Miles R, Depaulis A, Francis F (2008-06-25). "Epilepsy in Dcx knockout mice associated with discrete lamination defects and enhanced excitability in the hippocampus". PLOS ONE. 3 (6): e2473. Bibcode:2008PLoSO...3.2473N. doi: 10.1371/journal.pone.0002473 . PMC   2429962 . PMID   18575605.
  11. Sapir T, Horesh D, Caspi M, Atlas R, Burgess HA, Wolf SG, Francis F, Chelly J, Elbaum M, Pietrokovski S, Reiner O (March 2000). "Doublecortin mutations cluster in evolutionarily conserved functional domains". Hum. Mol. Genet. 9 (5): 703–12. doi: 10.1093/hmg/9.5.703 . PMID   10749977.
  12. Caspi M, Atlas R, Kantor A, Sapir T, Reiner O (September 2000). "Interaction between LIS1 and doublecortin, two lissencephaly gene products". Hum. Mol. Genet. 9 (15): 2205–13. doi: 10.1093/oxfordjournals.hmg.a018911 . PMID   11001923.
  13. Online Mendelian Inheritance in Man (OMIM): Doublecortin - 300121
  14. Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross ME, Walsh CA (January 1998). "Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein". Cell. 92 (1): 63–72. doi: 10.1016/S0092-8674(00)80899-5 . PMID   9489700.
  15. Lowenstein DH (2011). "Seizures and Epilepsy". In Loscalzo J, Longo DL, Fauci AS, Kasper DL, Hauser SL (eds.). Harrison's Principles of Internal Medicine (18th ed.). McGraw-Hill Professional. pp. 3251–3269. ISBN   978-0-07-174889-6.
  16. Šimčíková D, Heneberg P (December 2019). "Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases". Scientific Reports. 9 (1): 18577. Bibcode:2019NatSR...918577S. doi:10.1038/s41598-019-54976-4. PMC   6901466 . PMID   31819097.

Further reading

This article incorporates text from the public domain Pfam and InterPro: IPR003533