Endothelial progenitor cell (or EPC) is a term that has been applied to multiple different cell types that play roles in the regeneration of the endothelial lining of blood vessels. Outgrowth endothelial cells are an EPC subtype committed to endothelial cell formation. [1] Despite the history and controversy, the EPC in all its forms remains a promising target of regenerative medicine research.
Developmentally, the endothelium arises in close contact with the hematopoietic system. This, and the existence of hemogenic endothelium, led to a belief and search for adult hemangioblast- or angioblast-like cells; cells which could give rise to functional vasculature in adults. [2] The existence of endothelial progenitor cells has been posited since the mid-twentieth century, however their existence was not confirmed until the 1990s when Asahara et al. published the discovery of the first putative EPC. [3]
Recently, controversy has developed over the definition of true endothelial progenitors. [4] Although bone marrow-derived cells do appear to localize to injured vessels and promote an angiogenic switch, other studies have suggested these cells do not contribute directly to the functional endothelium, instead acting via paracrine methods to provide support for the resident endothelial cells. [5] [6] While some other authors have contested these, and maintained that they are true EPCs, [7] many investigators have begun to term these cells colony forming unit-Hill cells (CFU-Hill) or circulating angiogenic cells (CAC) instead (depending on the method of isolation), highlighting their role as hematopoietic myeloid cells involved in promoting new vessel growth. [8] [9]
Molecular genetic analysis of early outgrowth putative EPC populations suggests they do indeed have monocyte-like expression patterns, and support the existence of a separate population of progenitors, the late outgrowth, or endothelial colony forming cell (ECFC). [10] Furthermore, early outgrowth cells maintain other monocyte functions such as high Dil-Ac-LDL and India ink uptake and low eNOS expression. These original, early outgrowth, CFU-Hill or CACs are also shown to express CD14, a lipopolysaccharide receptor expressed by monocytes but not endothelial cells. [11]
Endothelial colony forming cells represent a distinct population that has been found to have the potential to differentiate and promote vessel repair. ECFCs are now known to be tissue-resident progenitor cells in adults that maintain some vasculogenic ability. [12]
By method of isolation and cell function, three main populations of putative adult EPCs have been described. The behavior of the cells can be found in the following table. [9] [13]
Behaviour .. \\ .. Population | Colony forming unit – Hill | Circulating angiogenic cell | Endothelial colony forming cell |
---|---|---|---|
Clonal proliferative status | - | - | + |
Replating ability | - | - | + |
In vitro tube formation | +/- | +/- | + |
In vivo de novo vessel formation | - | - | + |
Homing to ischemic sites in vivo | + | + | + |
Paracrine support of angiogenesis | + | + | + |
EPCs also have variable phenotypic markers used for identification. Unfortunately, there are no unique markers for endothelial progenitors that are not shared with other endothelial or hematopoietic cells, which has contributed to the historical controversy surrounding the field. A detailed overview of current markers can be found in the following table. [2] [13]
Marker .. \\ .. Population | Colony forming unit – Hill | Circulating angiogenic cell | Endothelial colony forming cell |
---|---|---|---|
CD34 expression | +/- | +/- | +/- |
CD133 expression | + | + | - |
CD45 expression | +/- | +/- | - |
CD146 expression | +/- | +/- | + |
VE-cadherin expression | +/- | +/- | ++ |
CD115 expression | + | + | - |
CD31 (PECAM) expression | + | + | + |
CD14 expression | + | + | - |
CD105 expression | + | + | + |
CD117 (ckit) expression | + | + | +/- |
VEGFR1 expression | + | + | + |
VEGFR2 (KDR/Flk1) expression | + | + | ++ |
TIE-2 expression | + | + | + |
CXCR4 expression | + | + | +/- |
von Willebrand factor expression | +/- | +/- | + |
ALDH | Bright | Bright | Bright |
acLDL uptake | + | + | + |
As originally isolated by Asahara et al., the CFU-Hill population is an early outgrowth, formed by plating peripheral blood mononuclear cells on fibronectin-coated dishes, allowing adhesion and depleting non-adherent cells, and isolating discrete colonies. [8] [9]
A similar method is to culture the peripheral blood mononuclear fraction in supplemented endothelial growth medium, removing the non-adherent cells, and isolating the remaining. While these cells display some endothelial characteristics, they do not form colonies. [8] [9]
Endothelial colony forming cells are a late outgrowth cell type; that is, they are only isolated after significantly longer culture than CFU-Hill cells. ECFCs are isolated by plating peripheral blood mononuclear fraction on collagen-coated plates, removing non-adherent cells, and culturing for weeks until the emergence of colonies with a distinctive cobblestone morphology. These cells are phenotypically similar to endothelial cells and have been shown to create vessel-like structures in vitro and in vivo. [8] [9]
Certain developmental cells may be similar to or the same as other endothelial progenitors, though not typically referred to as EPCs. Hemangioblasts (or their in vitro counterpart, blast-colony forming cells) are cells believed to give rise to both the endothelial and hematopoietic systems during early development. Angioblasts are believed to be a form of early progenitor or stem cell which gives rise to the endothelium alone. More recently, mesoangioblasts have been theorized as a cell giving rise to multiple mesodermal tissues. [14] [15] [16]
Endothelial progenitor cells are likely important in tumour growth and are thought to be critical for metastasis and the angiogenesis. [17] [18] [19] A large amount of research has been done on CFU-Hill bone marrow-derived putative EPCs. Ablation of the endothelial progenitor cells in the bone marrow lead to a significant decrease in tumour growth and vasculature development. This indicates that endothelial progenitor cells present novel therapeutic targets. [20] Inhibitor of DNA Binding 1 (ID1) has been used as a marker for these cells; [21] this allows for tracking EPCs from the bone marrow to the blood to the tumour-stroma and even incorporated in tumour vasculature.
Recently it has been found that miRNAs regulate EPC biology and tumour angiogenesis. This work by Plummer et al. found that in particular targeting of the miRNAs miR-10b and miR-196b led to significant defects in angiogenesis-mediated tumor growth by decreasing the mobilization of proangiogenic EPCs to the tumour. These findings indicate that directed targeting these miRNAs in EPCs may result in a novel strategy for inhibiting tumor angiogenesis. [22]
Studies have shown ECFCs and human umbilical vein endothelial cells (HUVECs) to have a capacity for tumor migration and neoangiogenesis even greater than that of other CD34+ hematopoietic cells when implanted in immunodeficient mice, suggesting the endothelial progenitors play a key role, but further supporting the importance of both cell types as targets for pharmacological therapy. [23]
Higher levels of circulating "endothelial progenitor cells" were detected in the bloodstream of patients, predicted better outcomes, and patients experienced fewer repeat heart attacks, [24] though statistical correlations between these outcomes and circulating endothelial progenitor cell numbers were scant in the original research. Endothelial progenitor cells are mobilized after a myocardial infarction, and that they function to restore the lining of blood vessels that are damaged during the heart attack.
A number of small phase clinical trials have begun to point to EPCs as a potential treatment for various cardiovascular diseases (CVDs). For instance, the year long "Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction" (TOPCARE-AMI) studied the therapeutic effect of infusing ex-vivo expanded bone marrow EPCs and culture enriched EPCs derived from peripheral blood into 20 patients with acute myocardial infarction (MI). After four months, significant enhancements were found in ventricular ejection fraction, cardiac geometry, coronary blood flow reserve, and myocardial viability (Shantsila, Watson, & Lip). A similar study looked at the therapeutic effects of EPCs on leg ischemia caused by severe peripheral artery disease. The study injected a sample of EPC rich blood into the gastrocnemius muscles of 25 patients. After 24 weeks an increased number of collateral vessels and improved recovery in blood perfusion was observed. Rest pain and pain-free walking were also noted to have improved [25]
The role of endothelial progenitor cells in wound healing remains unclear. Blood vessels have been seen entering ischemic tissue in a process driven by mechanically forced ingress of existing capillaries into the avascular region, and importantly, instead of through sprouting angiogenesis. These observations contradict sprouting angiogenesis driven by EPCs. Taken together with the inability to find bone-marrow derived endothelium in new vasculature, there is now little material support for postnatal vasculogenesis. Instead, angiogenesis is likely driven by a process of physical force. [26]
In endometriosis, it appears that up to 37% of the microvascular endothelium of the ectopic endometrial tissue originates from endothelial progenitor cells. [27]
A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for regulating a variety of cellular processes.
A capillary is a small blood vessel, from 5 to 10 micrometres in diameter, and is part of the microcirculation system. Capillaries are microvessels and the smallest blood vessels in the body. They are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the site of the exchange of many substances from the surrounding interstitial fluid, and they convey blood from the smallest branches of the arteries (arterioles) to those of the veins (venules). Other substances which cross capillaries include water, oxygen, carbon dioxide, urea, glucose, uric acid, lactic acid and creatinine. Lymph capillaries connect with larger lymph vessels to drain lymphatic fluid collected in microcirculation.
Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature mainly by processes of sprouting and splitting, but processes such as coalescent angiogenesis, vessel elongation and vessel cooption also play a role. Vasculogenesis is the embryonic formation of endothelial cells from mesoderm cell precursors, and from neovascularization, although discussions are not always precise. The first vessels in the developing embryo form through vasculogenesis, after which angiogenesis is responsible for most, if not all, blood vessel growth during development and in disease.
Metastasis is a pathogenic agent's spread from an initial or primary site to a different or secondary site within the host's body; the term is typically used when referring to metastasis by a cancerous tumor. The newly pathological sites, then, are metastases (mets). It is generally distinguished from cancer invasion, which is the direct extension and penetration by cancer cells into neighboring tissues.
Bone marrow is a semi-solid tissue found within the spongy portions of bones. In birds and mammals, bone marrow is the primary site of new blood cell production. It is composed of hematopoietic cells, marrow adipose tissue, and supportive stromal cells. In adult humans, bone marrow is primarily located in the ribs, vertebrae, sternum, and bones of the pelvis. Bone marrow comprises approximately 5% of total body mass in healthy adult humans, such that a man weighing 73 kg (161 lbs) will have around 3.7 kg (8 lbs) of bone marrow.
The endothelium is a single layer of squamous endothelial cells that line the interior surface of blood vessels and lymphatic vessels. The endothelium forms an interface between circulating blood or lymph in the lumen and the rest of the vessel wall.
Hematopoietic stem cells (HSCs) are the stem cells that give rise to other blood cells. This process is called haematopoiesis. In vertebrates, the first definitive HSCs arise from the ventral endothelial wall of the embryonic aorta within the (midgestational) aorta-gonad-mesonephros region, through a process known as endothelial-to-hematopoietic transition. In adults, haematopoiesis occurs in the red bone marrow, in the core of most bones. The red bone marrow is derived from the layer of the embryo called the mesoderm.
CD34 is a transmembrane phosphoglycoprotein protein encoded by the CD34 gene in humans, mice, rats and other species.
Vasculogenesis is the process of blood vessel formation, occurring by a de novo production of endothelial cells. It is the first stage of the formation of the vascular network, closely followed by angiogenesis.
Extramedullary hematopoiesis refers to hematopoiesis occurring outside of the medulla of the bone. It can be physiologic or pathologic.
Hemangioblasts are the multipotent precursor cells that can differentiate into both hematopoietic and endothelial cells. In the mouse embryo, the emergence of blood islands in the yolk sac at embryonic day 7 marks the onset of hematopoiesis. From these blood islands, the hematopoietic cells and vasculature are formed shortly after. Hemangioblasts are the progenitors that form the blood islands. To date, the hemangioblast has been identified in human, mouse and zebrafish embryos.
Endothelial stem cells (ESCs) are one of three types of stem cells found in bone marrow. They are multipotent, which describes the ability to give rise to many cell types, whereas a pluripotent stem cell can give rise to all types. ESCs have the characteristic properties of a stem cell: self-renewal and differentiation. These parent stem cells, ESCs, give rise to progenitor cells, which are intermediate stem cells that lose potency. Progenitor stem cells are committed to differentiating along a particular cell developmental pathway. ESCs will eventually produce endothelial cells (ECs), which create the thin-walled endothelium that lines the inner surface of blood vessels and lymphatic vessels. The blood vessels include arteries and veins. Endothelial cells can be found throughout the whole vascular system and they also play a vital role in the movement of white blood cells
E-selectin, also known as CD62 antigen-like family member E (CD62E), endothelial-leukocyte adhesion molecule 1 (ELAM-1), or leukocyte-endothelial cell adhesion molecule 2 (LECAM2), is a selectin cell adhesion molecule expressed only on endothelial cells activated by cytokines. Like other selectins, it plays an important part in inflammation. In humans, E-selectin is encoded by the SELE gene.
In cell biology, precursor cells—also called blast cells—are partially differentiated, or intermediate, and are sometimes referred to as progenitor cells. A precursor cell is a stem cell with the capacity to differentiate into only one cell type, meaning they are unipotent stem cells. In embryology, precursor cells are a group of cells that later differentiate into one organ. However, progenitor cells are considered multipotent.
Angiogenesis is the process of forming new blood vessels from existing blood vessels, formed in vasculogenesis. It is a highly complex process involving extensive interplay between cells, soluble factors, and the extracellular matrix (ECM). Angiogenesis is critical during normal physiological development, but it also occurs in adults during inflammation, wound healing, ischemia, and in pathological conditions such as rheumatoid arthritis, hemangioma, and tumor growth. Proteolysis has been indicated as one of the first and most sustained activities involved in the formation of new blood vessels. Numerous proteases including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase domain (ADAM), a disintegrin and metalloproteinase domain with throbospondin motifs (ADAMTS), and cysteine and serine proteases are involved in angiogenesis. This article focuses on the important and diverse roles that these proteases play in the regulation of angiogenesis.
Lymph node stromal cells are essential to the structure and function of the lymph node whose functions include: creating an internal tissue scaffold for the support of hematopoietic cells; the release of small molecule chemical messengers that facilitate interactions between hematopoietic cells; the facilitation of the migration of hematopoietic cells; the presentation of antigens to immune cells at the initiation of the adaptive immune system; and the homeostasis of lymphocyte numbers. Stromal cells originate from multipotent mesenchymal stem cells.
Many human blood cells, such as red blood cells (RBCs), immune cells, and even platelets all originate from the same progenitor cell, the hematopoietic stem cell (HSC). As these cells are short-lived, there needs to be a steady turnover of new blood cells and the maintenance of an HSC pool. This is broadly termed hematopoiesis. This event requires a special environment, termed the hematopoietic stem cell niche, which provides the protection and signals necessary to carry out the differentiation of cells from HSC progenitors. This stem-cell niche relocates from the yolk sac to eventually rest in the bone marrow of mammals. Many pathological states can arise from disturbances in this niche environment, highlighting its importance in maintaining hematopoiesis.
Endothelial colony forming cells are adult endothelial progenitor cells capable of differentiating to regenerate endothelial cell populations. They are residents of adult vasculature and are also thought to migrate to areas of injury as one form of circulating endothelial cell. They are thought to play a critical role in vascular healing after injury as well as developmental angiogenesis.
Tumor-associated endothelial cells or tumor endothelial cells (TECs) refers to cells lining the tumor-associated blood vessels that control the passage of nutrients into surrounding tumor tissue. Across different cancer types, tumor-associated blood vessels have been discovered to differ significantly from normal blood vessels in morphology, gene expression, and functionality in ways that promote cancer progression. There has been notable interest in developing cancer therapeutics that capitalize on these abnormalities of the tumor-associated endothelium to destroy tumors.
David M. Smadja is a French hematologist working as a hospital practitioner in Georges Pompidou European Hospital, part of the AP-HP, and Paris Cité University. He specializes in hemostasis, thrombosis and vascular biology. Smadja has contributed to research on vascular and coagulation disorders associated to COVID-19 and long COVID during the global pandemic.