ROS1

Last updated
ROS1
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases ROS1 , MCF3, ROS, c-ros-1, ROS proto-oncogene 1, receptor tyrosine kinase
External IDs OMIM: 165020; MGI: 97999; HomoloGene: 2207; GeneCards: ROS1; OMA:ROS1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002944
NM_001378891
NM_001378902

NM_011282

RefSeq (protein)

NP_002935
NP_001365820
NP_001365831

NP_035412

Location (UCSC) Chr 6: 117.29 – 117.43 Mb Chr 10: 51.92 – 52.07 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Proto-oncogene tyrosine-protein kinase ROS is an enzyme that in humans is encoded by the ROS1 gene. [5] [6]

Contents

Function

This proto-oncogene, highly expressed in a variety of tumor cell lines, belongs to the sevenless subfamily of tyrosine kinase insulin receptor genes. The protein encoded by this gene is a type I integral membrane protein with tyrosine kinase activity. The protein may function as a growth or differentiation factor receptor. [6]

Role in cancer

Micrograph showing a ROS1-positive adenocarcinoma of the lung. ROS1 immunostain. Adenocarcinoma - ROS1 positive - ROS1 -- very high mag.jpg
Micrograph showing a ROS1-positive adenocarcinoma of the lung. ROS1 immunostain.

ROS1 is a receptor tyrosine kinase (encoded by the gene ROS1) with structural similarity to the anaplastic lymphoma kinase (ALK) protein; it is encoded by the c-ros oncogene and was first identified in 1986. [7] [8] [9] [10] The exact role of the ROS1 protein in normal development, as well as its normal physiologic ligand, have not been defined. [8] Nonetheless, as gene rearrangement events involving ROS1 have been described in lung and other cancers, and since such tumors have been found to be remarkably responsive to small molecule tyrosine kinase inhibitors, interest in identifying ROS1 rearrangements as a therapeutic target in cancer has been increasing. [7] [11] In 2016, the small molecule tyrosine kinase inhibitor, crizotinib, was approved for the treatment of patients with metastatic NSCLC whose tumors are ROS1 -positive. [12]

Gene rearrangements involving the ROS1 gene were first detected in glioblastoma tumors and cell lines. [13] [14] In 2007 a ROS1 rearrangement was identified in a cell line derived from a lung adenocarcinoma patient. [15] Since that discovery, multiple studies have demonstrated an incidence of approximately 1% in lung cancers, demonstrated oncogenicity, and showed that inhibition of tumor cells bearing ROS1 gene fusions by crizotinib or other ROS1 tyrosine kinase inhibitors was effective in vitro. [16] [17] [18] Clinical data supports the use of crizotinib in lung cancer patients with ROS1 gene fusions. [19] [20] Preclinical and clinical work suggests multiple potential mechanisms of drug resistance in ROS1 + lung cancer, including kinase domain mutations in ROS1 and bypass signaling via RAS and EGFR. [21] [22] [23] Although the most preclinical and clinical studies of ROS1 gene fusions have been performed in lung cancer, ROS1 fusions have been detected in multiple other tumor histologies, including ovarian carcinoma, sarcoma, cholangiocarcinomas and others. [24] Crizotinib or other ROS1 inhibitors may be effective in other tumor histologies beyond lung cancer as demonstrated by a patient with an inflammatory myofibroblastic tumor harboring a ROS1 fusion with a dramatic response to crizotinib. [25]

Preclinical findings

From a large-scale survey of tyrosine kinase activity in non-small cell lung cancer (NSCLC), and identified more than 50 distinct tyrosine kinases and over 2500 downstream substrates, with the goal of identifying candidate oncogenes. [26] In a sampling of 96 tissue samples from NSCLC patients, approximately 30% displayed high levels of phosphotyrosine expression; further analysis was conducted to identify highly phosphorylated tyrosine kinases in NSCLC from a panel of 41 NSCLC cell lines, and 150 patient samples. [26] Among the top 20 receptor tyrosine kinases identified in this analysis, 15 were identified in both cell lines and tumors, and among these were both ALK and ROS1. [26] These initial findings paved the way for more expansive analyses of ROS1 kinase fusions in NSCLC and other cancers.

Fusion prevalence

In patients with NSCLC, approximately 2% are positive for a ROS1 gene rearrangement, and these rearrangements are mutually exclusive of ALK rearrangement. [27] ROS1 fusion-positive patients tend to be younger, with a median age of 49.8 years, and never-smokers, with a diagnosis of adenocarcinoma. There is a higher representation of Asian ethnicity and patients with Stage IV disease. [27] ROS1 rearrangements are estimated to be roughly half as common as ALK-rearranged NSCLCs. Similar to ALK-rearranged, ROS1-rearranged NSCLC have younger age of onset and a non-smoking history. [27] A benefit of a small-molecule ALK, ROS1, and cMET inhibitor, crizotinib, was also shown in this patient group.

ROS1 expression was found in approximately 2% of NSCLC patients, and its expression was limited to those patients with ROS1 gene fusions. [11] Similar findings were reported in a separate analysis of 447 NSCLC samples, of which 1.2% were found to be positive for ROS1 rearrangement; this study also confirmed the activity of the ALK/ROS1 /cMET inhibitor crizotinib in ROS1 -positive tumors. [8] ROS1 fusions were also identified in approximately 2% of adenocarcinomas and 1% of glioblastoma samples in an assessment of kinase fusions across different cancers. [28]

Table 1: Sampling of ROS1 Rearrangements Observed in NSCLC and Other Cancers. All of the kinase fusions retain the tyrosine kinase domain of ROS1 . List is not exhaustive. (Adapted from Stumpfova 2012).

Cancer TypeROS1 Fusion Gene
NSCLCFIG - ROS1*; SLC34A2 - ROS1*; CD74 - ROS1*; SDC - ROS1*; EZR - ROS1; LRIG3 - ROS1; TPM3 - ROS1
GastricSLC34A2 - ROS1*
ColorectalSLC34A2 - ROS1*
Spitzoid melanomaTPM3 - ROS1
CholangiosarcomaFIG - ROS1*
GlioblastomaFIG - ROS1*
OvarianFIG - ROS1*
AngiosarcomaCEP85L-ROS1

* Multiple variant isoforms observed

CD74; cluster of differentiation 74, long/short isoforms; EZR; ezrin; FIG; fused in glioblastoma; SDC4; LRIG3; leucine-rich repeats and immunoglobulin-like domains 3; SDC; syndecan 4; SLC34A2; solute carrier family 34 (sodium phosphate), member 2; TPM3; tropomyosin 3

As a drug target

Several drugs target ROS1 fusions in cancer, with varying levels of success; most of the drugs to date have been tested only for ROS1-positive non-small cell lung carcinoma (NSCLC). [29] However, some clinical trials (like those for entrectinib, DS-6051b, and TPX-0005) accept patients with ROS1 cancer in any type of solid tumor.

The ROS1ders

The ROS1ders [41] is a worldwide collaboration of ROS1+ cancer patients and caregivers with a goal of improving patient outcomes and accelerating research for any type of ROS1+ cancer. It is the first such collaboration focused on cancers driven by a single oncogene. Their website tracks targeted therapies, clinical trials, world experts and new developments for ROS1+ cancers. [42] Partners include patient-focused nonprofits, clinicians who treat ROS1+ patients, ROS1 researchers, pharmaceutical firms and biotech companies.

Related Research Articles

<span class="mw-page-title-main">Targeted therapy</span> Type of therapy

Targeted therapy or molecularly targeted therapy is one of the major modalities of medical treatment (pharmacotherapy) for cancer, others being hormonal therapy and cytotoxic chemotherapy. As a form of molecular medicine, targeted therapy blocks the growth of cancer cells by interfering with specific targeted molecules needed for carcinogenesis and tumor growth, rather than by simply interfering with all rapidly dividing cells. Because most agents for targeted therapy are biopharmaceuticals, the term biologic therapy is sometimes synonymous with targeted therapy when used in the context of cancer therapy. However, the modalities can be combined; antibody-drug conjugates combine biologic and cytotoxic mechanisms into one targeted therapy.

<span class="mw-page-title-main">Anaplastic lymphoma kinase</span> Protein-coding gene in the species Homo sapiens

Anaplastic lymphoma kinase (ALK) also known as ALK tyrosine kinase receptor or CD246 is an enzyme that in humans is encoded by the ALK gene.

ETV6-NTRK3 gene fusion is the translocation of genetic material between the ETV6 gene located on the short arm of chromosome 12 at position p13.2 and the NTRK3 gene located on the long arm of chromosome 15 at position q25.3 to create the (12;15)(p13;q25) fusion gene, ETV6-NTRK3. This new gene consists of the 5' end of ETV6 fused to the 3' end of NTRK3. ETV6-NTRK3 therefore codes for a chimeric oncoprotein consisting of the helix-loop-helix (HLH) protein dimerization domain of the ETV6 protein fused to the tyrosine kinase domain of the NTRK3 protein. The ETV6 gene codes for the transcription factor protein, ETV6, which suppresses the expression of, and thereby regulates, various genes that in mice are required for normal hematopoiesis as well as the development and maintenance of the vascular network. NTRK3 codes for Tropomyosin receptor kinase C a NT-3 growth factor receptor cell surface protein that when bound to its growth factor ligand, neurotrophin-3, becomes an active tyrosine kinase that phosphorylates tyrosine residues on, and thereby stimulates, signaling proteins that promote the growth, survival, and proliferation of their parent cells. The tyrosine kinase of the ETV6-NTRK3 fusion protein is dysfunctional in that it is continuously active in phosphorylating tyrosine residues on, and thereby continuously stimulating, proteins that promote the growth, survival, and proliferation of their parent cells. In consequence, these cells take on malignant characteristics and are on the pathway of becoming cancerous. Indeed, the ETV6-NTRK3 fusion gene appears to be a critical driver of several types of cancers. It was originally identified in congenital fibrosarcoma and subsequently found in mammary secretory carcinoma, mammary analogue secretory carcinoma of salivary glands, salivary gland–type carcinoma of the thyroid, secretory carcinoma of the skin, congenital fibrosarcoma, congenital mesoblastic nephroma, rare cases of acute myelogenous leukemia, ALK-negative Inflammatory myofibroblastic tumour, cholangiocarcinoma, and radiation-induced papillary thyroid carcinoma.

Targeted therapy of lung cancer refers to using agents specifically designed to selectively target molecular pathways responsible for, or that substantially drive, the malignant phenotype of lung cancer cells, and as a consequence of this (relative) selectivity, cause fewer toxic effects on normal cells.

<span class="mw-page-title-main">Adenocarcinoma of the lung</span> Lung cancer of glandular origin or characteristics

Adenocarcinoma of the lung is the most common type of lung cancer, and like other forms of lung cancer, it is characterized by distinct cellular and molecular features. It is classified as one of several non-small cell lung cancers (NSCLC), to distinguish it from small cell lung cancer which has a different behavior and prognosis. Lung adenocarcinoma is further classified into several subtypes and variants. The signs and symptoms of this specific type of lung cancer are similar to other forms of lung cancer, and patients most commonly complain of persistent cough and shortness of breath.

<span class="mw-page-title-main">Crizotinib</span> ALK inhibitor for treatment of non-small-cell lung cancer

Crizotinib, sold under the brand name Xalkori among others, is an anti-cancer medication used for the treatment of non-small cell lung carcinoma (NSCLC). Crizotinib inhibits the c-Met/Hepatocyte growth factor receptor (HGFR) tyrosine kinase, which is involved in the oncogenesis of a number of other histological forms of malignant neoplasms. It also acts as an ALK and ROS1 inhibitor.

<span class="mw-page-title-main">ALK inhibitor</span>

ALK inhibitors are anti-cancer drugs that act on tumours with variations of anaplastic lymphoma kinase (ALK) such as an EML4-ALK translocation. They fall under the category of tyrosine kinase inhibitors, which work by inhibiting proteins involved in the abnormal growth of tumour cells. All the current approved ALK inhibitors function by binding to the ATP pocket of the abnormal ALK protein, blocking its access to energy and deactivating it. A majority of ALK-rearranged NSCLC harbour the EML4-ALK fusion, although as of 2020, over 92 fusion partners have been discovered in ALK+ NSCLC. For each fusion partner, there can be several fusion variants depending on the position the two genes were fused at, and this may have implications on the response of the tumour and prognosis of the patient.

<span class="mw-page-title-main">ALK positive lung cancer</span> Medical condition

ALK positive lung cancer is a primary malignant lung tumor whose cells contain a characteristic abnormal configuration of DNA wherein, most frequently, the echinoderm microtubule-associated protein-like 4 (EML4) gene is fused to the anaplastic lymphoma kinase (ALK) gene. Less frequently, there will be novel translocation partners for the ALK gene, in place of EML4. This abnormal gene fusion leads to the production of a protein that appears, in many cases, to promote and maintain the malignant behavior of the cancer cells.

<span class="mw-page-title-main">Brigatinib</span> ALK inhibitor for treatment of non-small-cell lung cancer

Brigatinib, sold under the brand name Alunbrig among others, is a small-molecule targeted cancer therapy being developed by Ariad Pharmaceuticals, Inc. Brigatinib acts as both an anaplastic lymphoma kinase (ALK) and epidermal growth factor receptor (EGFR) inhibitor.

<span class="mw-page-title-main">Inflammatory myofibroblastic tumour</span> Medical condition

Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm of the mesodermal cells that form the connective tissues which support virtually all of the organs and tissues of the body. IMT was formerly termed inflammatory pseudotumor. Currently, however, inflammatory pseudotumor designates a large and heterogeneous group of soft tissue tumors that includes inflammatory myofibroblastic tumor, plasma cell granuloma, xanthomatous pseudotumor, solitary mast cell granuloma, inflammatory fibrosarcoma, pseudosarcomatous myofibroblastic proliferation, myofibroblastoma, inflammatory myofibrohistiocytic proliferation, and other tumors that develop from connective tissue cells. Inflammatory pseudotumour is a generic term applied to various neoplastic and non-neoplastic tissue lesions which share a common microscopic appearance consisting of spindle cells and a prominent presence of the white blood cells that populate chronic or, less commonly, acute inflamed tissues.

Targeted molecular therapy for neuroblastoma involves treatment aimed at molecular targets that have a unique expression in this form of cancer. Neuroblastoma, the second most common pediatric malignant tumor, often involves treatment through intensive chemotherapy. A number of molecular targets have been identified for the treatment of high-risk forms of this disease. Aiming treatment in this way provides a more selective way to treat the disease, decreasing the risk for toxicities that are associated with the typical treatment regimen. Treatment using these targets can supplement or replace some of the intensive chemotherapy that is used for neuroblastoma. These molecular targets of this disease include GD2, ALK, and CD133. GD2 is a target of immunotherapy, and is the most fully developed of these treatment methods, but is also associated with toxicities. ALK has more recently been discovered, and drugs in development for this target are proving to be successful in neuroblastoma treatment. The role of CD133 in neuroblastoma has also been more recently discovered and is an effective target for treatment of this disease.

<span class="mw-page-title-main">Squamous-cell carcinoma of the lung</span> Medical condition

Squamous-cell carcinoma (SCC) of the lung is a histologic type of non-small-cell lung carcinoma (NSCLC). It is the second most prevalent type of lung cancer after lung adenocarcinoma and it originates in the bronchi. Its tumor cells are characterized by a squamous appearance, similar to the one observed in epidermal cells. Squamous-cell carcinoma of the lung is strongly associated with tobacco smoking, more than any other forms of NSCLC.

<span class="mw-page-title-main">Ceritinib</span> ALK inhibitor for treatment of non-small-cell lung cancer

Ceritinib is a prescription-only drug used for the treatment of non-small cell lung cancer (NSCLC). It was developed by Novartis and received FDA approval for use in April 2014.

<span class="mw-page-title-main">Alectinib</span> ALK inhibitor for treatment of non-small-cell lung cancer

Alectinib (INN), sold under the brand name Alecensa, is an anticancer medication that is used to treat non-small-cell lung cancer (NSCLC). It blocks the activity of anaplastic lymphoma kinase (ALK). It is taken by mouth. It was developed by Chugai Pharmaceutical Co. Japan, which is part of the Hoffmann-La Roche group.

<span class="mw-page-title-main">Entrectinib</span> TKI inhibitor used for cancer treatment

Entrectinib, sold under the brand name Rozlytrek, is an anti-cancer medication used to treat ROS1-positive non-small cell lung cancer and NTRK fusion-positive solid tumors. It is a selective tyrosine kinase inhibitor (TKI), of the tropomyosin receptor kinases (TRK) A, B and C, C-ros oncogene 1 (ROS1) and anaplastic lymphoma kinase (ALK).

<span class="mw-page-title-main">Lorlatinib</span> Kinase inhibitor for treatment of non-small-cell lung cancer

Lorlatinib, sold under the brand name Lorbrena in the United States, Canada, and Japan, and Lorviqua in the European Union, is an anti-cancer medication used for the treatment of non-small cell lung cancer. It is an orally administered inhibitor of anaplastic lymphoma kinase (ALK) and C-ros oncogene 1 (ROS1), two enzymes that play a role in the development of cancer. It was developed by Pfizer.

Christine M. Lovly is an associate professor of medicine at Vanderbilt University. Her research involves the development of novel treatment strategies for ALK positive lung cancer.

<span class="mw-page-title-main">RET inhibitor</span>

RET kinase inhibitors are a type of targeted cancer treatment that block abnormally activated RET proto-oncogene, a protein involved in cell growth. These inhibitors are used to treat cancers like non-small cell lung cancer, medullary thyroid carcinoma, and some types of colorectal and pancreatic cancer.

Klarisa Rikova is a senior scientist at Cell Signaling Technology, Inc. (CST) in Danvers, Massachusetts. She has worked at CST since 2000, and worked as a scientist at CST's sister company, Bluefin Biomedicine in Beverly, Massachusetts, from 2015 to 2019.

<span class="mw-page-title-main">Repotrectinib</span> Medication

Repotrectinib, sold under the brand name Augtyro, is an anti-cancer medication used for the treatment of non-small cell lung cancer. It is taken by mouth. Repotrectinib is an inhibitor of proto-oncogene tyrosine-protein kinase ROS1 (ROS1) and of the tropomyosin receptor tyrosine kinases (TRKs) TRKA, TRKB, and TRKC.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000047936 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000019893 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Galland F, Stefanova M, Lafage M, Birnbaum D (July 1992). "Localization of the 5' end of the MCF2 oncogene to human chromosome 15q15----q23". Cytogenetics and Cell Genetics. 60 (2): 114–6. doi:10.1159/000133316. PMID   1611909.
  6. 1 2 "Entrez Gene: ROS1 v-ros UR2 sarcoma virus oncogene homolog 1 (avian)".
  7. 1 2 Berge EM, Doebele RC (February 2014). "Targeted therapies in non-small cell lung cancer: emerging oncogene targets following the success of epidermal growth factor receptor". Seminars in Oncology. 41 (1): 110–25. doi:10.1053/j.seminoncol.2013.12.006. PMC   4159759 . PMID   24565585.
  8. 1 2 3 Davies KD, Le AT, Theodoro MF, Skokan MC, Aisner DL, Berge EM, Terracciano LM, Cappuzzo F, Incarbone M, Roncalli M, Alloisio M, Santoro A, Camidge DR, Varella-Garcia M, Doebele RC (September 2012). "Identifying and targeting ROS1 gene fusions in non-small cell lung cancer". Clinical Cancer Research. 18 (17): 4570–9. doi:10.1158/1078-0432.CCR-12-0550. PMC   3703205 . PMID   22919003.
  9. Matsushime H, Wang LH, Shibuya M (August 1986). "Human c-ros-1 gene homologous to the v-ros sequence of UR2 sarcoma virus encodes for a transmembrane receptorlike molecule". Molecular and Cellular Biology. 6 (8): 3000–4. doi:10.1128/MCB.6.8.3000. PMC   367872 . PMID   3023956.
  10. Birchmeier C, Birnbaum D, Waitches G, Fasano O, Wigler M (September 1986). "Characterization of an activated human ros gene". Molecular and Cellular Biology. 6 (9): 3109–16. doi:10.1128/MCB.6.9.3109. PMC   367045 . PMID   3785223.
  11. 1 2 Rimkunas VM, Crosby KE, Li D, Hu Y, Kelly ME, Gu TL, Mack JS, Silver MR, Zhou X, Haack H (August 2012). "Analysis of receptor tyrosine kinase ROS1-positive tumors in non-small cell lung cancer: identification of a FIG-ROS1 fusion". Clinical Cancer Research. 18 (16): 4449–57. doi: 10.1158/1078-0432.CCR-11-3351 . PMID   22661537.
  12. Berge EM, Doebele RC (February 2014). "Targeted therapies in non-small cell lung cancer: emerging oncogene targets following the success of epidermal growth factor receptor". Seminars in Oncology. 41 (1): 110–25. doi:10.1053/j.seminoncol.2013.12.006. PMC   4159759 . PMID   24565585.
  13. Rabin M, Birnbaum D, Young D, Birchmeier C, Wigler M, Ruddle FH (July 1987). "Human ros1 and mas1 oncogenes located in regions of chromosome 6 associated with tumor-specific rearrangements". Oncogene Research. 1 (2): 169–78. PMID   3329713.
  14. Birchmeier C, Sharma S, Wigler M (December 1987). "Expression and rearrangement of the ROS1 gene in human glioblastoma cells". Proceedings of the National Academy of Sciences of the United States of America. 84 (24): 9270–4. Bibcode:1987PNAS...84.9270B. doi: 10.1073/pnas.84.24.9270 . PMC   299735 . PMID   2827175.
  15. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneill J, Ren JM, Yuan J, Bakalarski CE, Villen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, Gu TL, Polakiewicz RD, Rush J, Comb MJ (December 2007). "Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer". Cell. 131 (6): 1190–203. doi: 10.1016/j.cell.2007.11.025 . PMID   18083107. S2CID   2316452.
  16. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, Asaka R, Hamanaka W, Ninomiya H, Uehara H, Lim Choi Y, Satoh Y, Okumura S, Nakagawa K, Mano H, Ishikawa Y (March 2012). "RET, ROS1 and ALK fusions in lung cancer". Nature Medicine. 18 (3): 378–81. doi:10.1038/nm.2658. PMID   22327623. S2CID   26561572.
  17. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang R, Mark EJ, Batten JM, Chen H, Wilner KD, Kwak EL, Clark JW, Carbone DP, Ji H, Engelman JA, Mino-Kenudson M, Pao W, Iafrate AJ (March 2012). "ROS1 rearrangements define a unique molecular class of lung cancers". Journal of Clinical Oncology. 30 (8): 863–70. doi:10.1200/JCO.2011.35.6345. PMC   3295572 . PMID   22215748.
  18. Davies KD, Le AT, Theodoro MF, Skokan MC, Aisner DL, Berge EM, Terracciano LM, Cappuzzo F, Incarbone M, Roncalli M, Alloisio M, Santoro A, Camidge DR, Varella-Garcia M, Doebele RC (September 2012). "Identifying and targeting ROS1 gene fusions in non-small cell lung cancer". Clinical Cancer Research. 18 (17): 4570–9. doi:10.1158/1078-0432.CCR-12-0550. PMC   3703205 . PMID   22919003.
  19. Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, Riely GJ, Varella-Garcia M, Shapiro GI, Costa DB, Doebele RC, Le LP, Zheng Z, Tan W, Stephenson P, Shreeve SM, Tye LM, Christensen JG, Wilner KD, Clark JW, Iafrate AJ (November 2014). "Crizotinib in ROS1-rearranged non-small-cell lung cancer". The New England Journal of Medicine. 371 (21): 1963–71. doi:10.1056/NEJMoa1406766. PMC   4264527 . PMID   25264305.
  20. Mazières J, Zalcman G, Crinò L, Biondani P, Barlesi F, Filleron T, Dingemans AM, Léna H, Monnet I, Rothschild SI, Cappuzzo F, Besse B, Thiberville L, Rouvière D, Dziadziuszko R, Smit EF, Wolf J, Spirig C, Pecuchet N, Leenders F, Heuckmann JM, Diebold J, Milia JD, Thomas RK, Gautschi O (March 2015). "Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort". Journal of Clinical Oncology. 33 (9): 992–9. doi: 10.1200/JCO.2014.58.3302 . PMID   25667280.
  21. Awad MM, Katayama R, McTigue M, Liu W, Deng YL, Brooun A, Friboulet L, Huang D, Falk MD, Timofeevski S, Wilner KD, Lockerman EL, Khan TM, Mahmood S, Gainor JF, Digumarthy SR, Stone JR, Mino-Kenudson M, Christensen JG, Iafrate AJ, Engelman JA, Shaw AT (June 2013). "Acquired resistance to crizotinib from a mutation in CD74-ROS1". The New England Journal of Medicine. 368 (25): 2395–401. doi:10.1056/NEJMoa1215530. PMC   3878821 . PMID   23724914.
  22. Davies KD, Mahale S, Astling DP, Aisner DL, Le AT, Hinz TK, Vaishnavi A, Bunn PA, Heasley LE, Tan AC, Camidge DR, Varella-Garcia M, Doebele RC (2013). "Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer". PLOS ONE. 8 (12): e82236. Bibcode:2013PLoSO...882236D. doi: 10.1371/journal.pone.0082236 . PMC   3862576 . PMID   24349229.
  23. Cargnelutti M, Corso S, Pergolizzi M, Mévellec L, Aisner DL, Dziadziuszko R, Varella-Garcia M, Comoglio PM, Doebele RC, Vialard J, Giordano S (March 2015). "Activation of RAS family members confers resistance to ROS1 targeting drugs". Oncotarget. 6 (7): 5182–94. doi:10.18632/oncotarget.3311. PMC   4467141 . PMID   25691052.
  24. Davies KD, Doebele RC (August 2013). "Molecular pathways: ROS1 fusion proteins in cancer". Clinical Cancer Research. 19 (15): 4040–5. doi:10.1158/1078-0432.CCR-12-2851. PMC   3732549 . PMID   23719267.
  25. Lovly CM, Gupta A, Lipson D, Otto G, Brennan T, Chung CT, Borinstein SC, Ross JS, Stephens PJ, Miller VA, Coffin CM (August 2014). "Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions". Cancer Discovery. 4 (8): 889–95. doi:10.1158/2159-8290.CD-14-0377. PMC   4125481 . PMID   24875859.
  26. 1 2 3 Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneill J, Ren JM, Yuan J, Bakalarski CE, Villen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, Gu TL, Polakiewicz RD, Rush J, Comb MJ (December 2007). "Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer". Cell. 131 (6): 1190–203. doi: 10.1016/j.cell.2007.11.025 . PMID   18083107. S2CID   2316452.
  27. 1 2 3 Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang R, Mark EJ, Batten JM, Chen H, Wilner KD, Kwak EL, Clark JW, Carbone DP, Ji H, Engelman JA, Mino-Kenudson M, Pao W, Iafrate AJ (March 2012). "ROS1 rearrangements define a unique molecular class of lung cancers". Journal of Clinical Oncology. 30 (8): 863–70. doi:10.1200/JCO.2011.35.6345. PMC   3295572 . PMID   22215748.
  28. Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C (2014-01-01). "The landscape of kinase fusions in cancer". Nature Communications. 5 (1): 4846. Bibcode:2014NatCo...5.4846S. doi:10.1038/ncomms5846. PMC   4175590 . PMID   25204415.
  29. Lin JJ, Shaw AT (2017). "Recent Advances in Targeting ROS1 in Lung Cancer". Journal of Thoracic Oncology. 12 (11): 1611–1625. doi:10.1016/j.jtho.2017.08.002. PMC   5659942 . PMID   28818606.
  30. Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. (2014). "Crizotinib in ROS1-rearranged non-small-cell lung cancer". The New England Journal of Medicine. 371 (21): 1963–71. doi:10.1056/NEJMoa1406766. PMC   4264527 . PMID   25264305.
  31. Clinical trial number NCT02465060 for "NCI-MATCH: Targeted Therapy Directed by Genetic Testing in Treating Patients With Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma" at ClinicalTrials.gov
  32. Clinical trial number NCT02693535 for "TAPUR: Testing the Use of Food and Drug Administration (FDA) Approved Drugs That Target a Specific Abnormality in a Tumor Gene in People With Advanced Stage Cancer (TAPUR)" at ClinicalTrials.gov
  33. Clinical trial number NCT02568267 for "Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions) (STARTRK-2)" at ClinicalTrials.gov
  34. 1 2 Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F, Hong DS (2017). "Targeting TRK family proteins in cancer". Pharmacology & Therapeutics. 173: 58–66. doi:10.1016/j.pharmthera.2017.02.006. PMID   28174090. S2CID   4243668.
  35. Santarpia M, Daffinà MG, D'Aveni A, Marabello G, Liguori A, Giovannetti E, Karachaliou N, Gonzalez Cao M, Rosell R, Altavilla G (2017). "Spotlight on ceritinib in the treatment of ALK+ NSCLC: design, development and place in therapy". Drug Design, Development and Therapy. 11: 2047–2063. doi: 10.2147/DDDT.S113500 . PMC   5503498 . PMID   28740365.
  36. Califano R, Greystoke A, Lal R, Thompson J, Popat S (2017). "Management of ceritinib therapy and adverse events in patients with ALK-rearranged non-small cell lung cancer". Lung Cancer (Amsterdam, Netherlands). 111: 51–58. doi:10.1016/j.lungcan.2017.06.004. hdl: 10044/1/54441 . PMID   28838397.
  37. Cui, J. Jean; Zhai, Dayong; Deng, Wei; Huang, Zhongdong; Rogers, Evan; Ung, Jane; Whitten, Jeffrey; Li, Yishan (January 2017). "TPX-0005: A Multi-Faceted Approach to Overcoming Clinical Resistances from Current ALK or ROS1 Inhibitor Treatment in Lung Cancer". Journal of Thoracic Oncology. 12 (1): S1164–S1165. doi: 10.1016/j.jtho.2016.11.1639 . Retrieved 12 Oct 2017.
  38. Clinical trial number NCT03093116 for "A Study of TPX-0005 in Patients With Advanced Solid Tumors Harboring ALK, ROS1, or NTRK1-3 Rearrangements (TRIDENT-1)" at ClinicalTrials.gov
  39. Clinical trial number NCT02279433 for "A First-in-human Study to Evaluate the Safety, Tolerability and Pharmacokinetics of DS-6051b" at ClinicalTrials.gov
  40. Katayama R, Kobayashi Y, Friboulet L, Lockerman EL, Koike S, Shaw AT, Engelman JA, Fujita N (2015). "Cabozantinib overcomes crizotinib resistance in ROS1 fusion-positive cancer". Clinical Cancer Research. 21 (1): 166–74. doi:10.1158/1078-0432.CCR-14-1385. PMC   4286456 . PMID   25351743.
  41. "ROS1+ Cancer Patients Partner to Increase Research". National Cancer Institute. 23 May 2017. Retrieved 12 Oct 2017.
  42. https://ros1cancer.com/

Further reading