Southeast Asian ovalocytosis

Last updated
Southeast Asian ovalocytosis
Specialty Hematology   OOjs UI icon edit-ltr-progressive.svg

Southeast Asian ovalocytosis is a blood disorder that is similar to, but distinct from hereditary elliptocytosis. [1] It is common in some communities in Malaysia and Papua New Guinea, as it confers some resistance to cerebral Falciparum Malaria. [2]

Contents

Pathophysiology

Southeast Asian ovalocytosis

It is hereditary hemolytic anaemia in which the red blood cell is oval-shaped. The primary defect in SAO differs significantly from other forms of elliptocytosis in that it is a defect in the gene coding for a protein that is not directly involved in the cytoskeleton scaffolding of the cell. Rather, the defect lies in a protein known as the band 3 protein, which lies in the cell membrane itself. The band 3 protein normally binds to another membrane-bound protein called ankyrin, but in SAO this bond is stronger than normal. Other abnormalities include tighter tethering of the band 3 protein to the cell membrane, increased tyrosine phosphorylation of the band 3 protein, reduced sulfate anion transport through the cell membrane, and more rapid ATP consumption. These (and probably other) consequences of the SAO mutations lead to the following erythrocyte abnormalities: [3]

These changes are thought to give rise to the scientifically and clinically interesting phenomenon that those with SAO exhibit: a marked in vivo resistance to infection by the causative pathogen of malaria, Plasmodium falciparum . Unlike those with the Leach phenotype of common hereditary elliptocytosis (see above), there is a clinically significant reduction in both disease severity and prevalence of malaria in those with SAO. Because of this, the 35% incidence rate of SAO along the north coast of Madang Province in Papua New Guinea, where malaria in endemic, is a good example of natural selection. [4]

The reasons behind the resistance to malaria become clear when given an explanation the way in which Plasmodium falciparum invades its host. This parasite is an obligate intracellular parasite, which must enter the cells of the host it is invading. The band 3 proteins aggregate on the cell membrane at the site of entry, forming a circular orifice that the parasite squeezes through. These band 3 proteins act as receptors for the parasite. Normally a process much like endocytosis occurs, and the parasite is able to isolate itself from the intracellular proteins that are toxic to it while still being inside an erythrocyte (see figure 2). The increased rigidity of the erythrocyte membrane in SAO is thought to reduce the capacity of the band 3 proteins to cluster together, thereby making it more difficult for the malaria parasite to properly attach to and enter the cell. The reduced free ATP within the cell has been postulated as a further mechanism behind which SAO creates a hostile environment for Plasmodium falciparum.[ citation needed ]

Diagnosis

Diagnosis is based on presence of ovalocytes on a peripheral blood smear in absence of haemolysis, and should be differentiated from other forms of hereditory elliptocytosis and hereditary spherocytosis. Genetic assays such as PCR amplification may be used to confirm mutation of the SLC4A1 gene. [5]

Treatment

Homozygous SAO appears to be largely incompatible with life, although there have been reports of individuals surviving till adolescence with prompt intervention. [6] [7]

Patients with heterozygous SAO are largely asymptomatic or may present with only compensated haemolytic anemia, hence treatment is generally not necessary. Patients with severe haemolytic anemia may require splenectomy.[ citation needed ]

See also

Related Research Articles

<i>Plasmodium</i> Genus of parasitic protists that can cause malaria

Plasmodium is a genus of unicellular eukaryotes that are obligate parasites of vertebrates and insects. The life cycles of Plasmodium species involve development in a blood-feeding insect host which then injects parasites into a vertebrate host during a blood meal. Parasites grow within a vertebrate body tissue before entering the bloodstream to infect red blood cells. The ensuing destruction of host red blood cells can result in malaria. During this infection, some parasites are picked up by a blood-feeding insect, continuing the life cycle.

<i>Plasmodium falciparum</i> Protozoan species of malaria parasite

Plasmodium falciparum is a unicellular protozoan parasite of humans, and the deadliest species of Plasmodium that causes malaria in humans. The parasite is transmitted through the bite of a female Anopheles mosquito and causes the disease's most dangerous form, falciparum malaria. It is responsible for around 50% of all malaria cases. P. falciparum is therefore regarded as the deadliest parasite in humans. It is also associated with the development of blood cancer and is classified as a Group 2A (probable) carcinogen.

Glycophorin C plays a functionally important role in maintaining erythrocyte shape and regulating membrane material properties, possibly through its interaction with protein 4.1. Moreover, it has previously been shown that membranes deficient in protein 4.1 exhibit decreased content of glycophorin C. It is also an integral membrane protein of the erythrocyte and acts as the receptor for the Plasmodium falciparum protein PfEBP-2.

<span class="mw-page-title-main">CD36</span> Mammalian protein found in Homo sapiens

CD36, also known as platelet glycoprotein 4, fatty acid translocase (FAT), scavenger receptor class B member 3 (SCARB3), and glycoproteins 88 (GP88), IIIb (GPIIIB), or IV (GPIV) is a protein that in humans is encoded by the CD36 gene. The CD36 antigen is an integral membrane protein found on the surface of many cell types in vertebrate animals. It imports fatty acids inside cells and is a member of the class B scavenger receptor family of cell surface proteins. CD36 binds many ligands including collagen, thrombospondin, erythrocytes parasitized with Plasmodium falciparum, oxidized low density lipoprotein, native lipoproteins, oxidized phospholipids, and long-chain fatty acids.

<i>Plasmodium vivax</i> Species of single-celled organism

Plasmodium vivax is a protozoal parasite and a human pathogen. This parasite is the most frequent and widely distributed cause of recurring malaria. Although it is less virulent than Plasmodium falciparum, the deadliest of the five human malaria parasites, P. vivax malaria infections can lead to severe disease and death, often due to splenomegaly. P. vivax is carried by the female Anopheles mosquito; the males do not bite.

<i>Plasmodium ovale</i> Species of single-celled organism

Plasmodium ovale is a species of parasitic protozoon that causes tertian malaria in humans. It is one of several species of Plasmodium parasites that infect humans, including Plasmodium falciparum and Plasmodium vivax which are responsible for most cases of malaria in the world. P. ovale is rare compared to these two parasites, and substantially less dangerous than P. falciparum.

<i>Plasmodium malariae</i> Species of single-celled organism

Plasmodium malariae is a parasitic protozoan that causes malaria in humans. It is one of several species of Plasmodium parasites that infect other organisms as pathogens, also including Plasmodium falciparum and Plasmodium vivax, responsible for most malarial infection. Found worldwide, it causes a so-called "benign malaria", not nearly as dangerous as that produced by P. falciparum or P. vivax. The signs include fevers that recur at approximately three-day intervals – a quartan fever or quartan malaria – longer than the two-day (tertian) intervals of the other malarial parasites.

<span class="mw-page-title-main">Merozoite surface protein</span>

Merozoitesurface proteins are both integral and peripheral membrane proteins found on the surface of a merozoite, an early life cycle stage of a protozoan. Merozoite surface proteins, or MSPs, are important in understanding malaria, a disease caused by protozoans of the genus Plasmodium. During the asexual blood stage of its life cycle, the malaria parasite enters red blood cells to replicate itself, causing the classic symptoms of malaria. These surface protein complexes are involved in many interactions of the parasite with red blood cells and are therefore an important topic of study for scientists aiming to combat malaria.

<span class="mw-page-title-main">Hereditary elliptocytosis</span> Medical condition

Hereditary elliptocytosis, also known as ovalocytosis, is an inherited blood disorder in which an abnormally large number of the person's red blood cells are elliptical rather than the typical biconcave disc shape. Such morphologically distinctive erythrocytes are sometimes referred to as elliptocytes or ovalocytes. It is one of many red-cell membrane defects. In its severe forms, this disorder predisposes to haemolytic anaemia. Although pathological in humans, elliptocytosis is normal in camelids.

<span class="mw-page-title-main">Hereditary stomatocytosis</span> Medical condition

Hereditary stomatocytosis describes a number of inherited, mostly autosomal dominant human conditions which affect the red blood cell and create the appearance of a slit-like area of central pallor (stomatocyte) among erythrocytes on peripheral blood smear. The erythrocytes' cell membranes may abnormally 'leak' sodium and/or potassium ions, causing abnormalities in cell volume. Hereditary stomatocytosis should be distinguished from acquired causes of stomatocytosis, including dilantin toxicity and alcoholism, as well as artifact from the process of preparing peripheral blood smears.

<span class="mw-page-title-main">Hereditary pyropoikilocytosis</span> Medical condition

Hereditary pyropoikilocytosis (HPP) is an autosomal recessive form of hemolytic anemia characterized by an abnormal sensitivity of red blood cells to heat and erythrocyte morphology similar to that seen in thermal burns or from prolonged exposure of a healthy patient's blood sample to high ambient temperatures. Patients with HPP tend to experience severe hemolysis and anemia in infancy that gradually improves, evolving toward typical elliptocytosis later in life. However, the hemolysis can lead to rapid sequestration and destruction of red cells. Splenectomy is curative when this occurs.

The first approved vaccine for malaria is RTS,S, known by the brand name Mosquirix. As of April 2022, the vaccine has been given to 1 million children living in areas with moderate-to-high malaria transmission. It requires at least three doses in infants by age 2, and a fourth dose extends the protection for another 1–2 years. The vaccine reduces hospital admissions from severe malaria by around 30%.

<span class="mw-page-title-main">Hemozoin</span>

Haemozoin is a disposal product formed from the digestion of blood by some blood-feeding parasites. These hematophagous organisms such as malaria parasites, Rhodnius and Schistosoma digest haemoglobin and release high quantities of free heme, which is the non-protein component of haemoglobin. Heme is a prosthetic group consisting of an iron atom contained in the center of a heterocyclic porphyrin ring. Free heme is toxic to cells, so the parasites convert it into an insoluble crystalline form called hemozoin. In malaria parasites, hemozoin is often called malaria pigment.

Human genetic resistance to malaria refers to inherited changes in the DNA of humans which increase resistance to malaria and result in increased survival of individuals with those genetic changes. The existence of these genotypes is likely due to evolutionary pressure exerted by parasites of the genus Plasmodium which cause malaria. Since malaria infects red blood cells, these genetic changes are most common alterations to molecules essential for red blood cell function, such as hemoglobin or other cellular proteins or enzymes of red blood cells. These alterations generally protect red blood cells from invasion by Plasmodium parasites or replication of parasites within the red blood cell.

Pregnancy-associated malaria (PAM) or placental malaria is a presentation of the common illness that is particularly life-threatening to both mother and developing fetus. PAM is caused primarily by infection with Plasmodium falciparum, the most dangerous of the four species of malaria-causing parasites that infect humans. During pregnancy, a woman faces a much higher risk of contracting malaria and of associated complications. Prevention and treatment of malaria are essential components of prenatal care in areas where the parasite is endemic – tropical and subtropical geographic areas. Placental malaria has also been demonstrated to occur in animal models, including in rodent and non-human primate models.

<span class="mw-page-title-main">Duffy binding proteins</span>

In molecular biology, Duffy binding proteins are found in Plasmodium. Plasmodium vivax and Plasmodium knowlesi merozoites invade Homo sapiens erythrocytes that express Duffy blood group surface determinants. The Duffy receptor family is localised in micronemes, an organelle found in all organisms of the phylum Apicomplexa.

KAHRP is a protein expressed by Plasmodium falciparum infecting erythrocytes. KAHRP is a major component of knobs, feature found on Plasmodium falciparum infected erythrocytes.

<span class="mw-page-title-main">Parasitophorous vacuole</span>

The parasitophorous vacuole (PV) is a structure produced by apicomplexan parasites in the cells of its host. The PV allows the parasite to develop while protected from the phagolysosomes of the host cell.

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a family of proteins present on the membrane surface of red blood cells that are infected by the malarial parasite Plasmodium falciparum. PfEMP1 is synthesized during the parasite's blood stage inside the RBC, during which the clinical symptoms of falciparum malaria are manifested. Acting as both an antigen and adhesion protein, it is thought to play a key role in the high level of virulence associated with P. falciparum. It was discovered in 1984 when it was reported that infected RBCs had unusually large-sized cell membrane proteins, and these proteins had antibody-binding (antigenic) properties. An elusive protein, its chemical structure and molecular properties were revealed only after a decade, in 1995. It is now established that there is not one but a large family of PfEMP1 proteins, genetically regulated (encoded) by a group of about 60 genes called var. Each P. falciparum is able to switch on and off specific var genes to produce a functionally different protein, thereby evading the host's immune system. RBCs carrying PfEMP1 on their surface stick to endothelial cells, which facilitates further binding with uninfected RBCs, ultimately helping the parasite to both spread to other RBCs as well as bringing about the fatal symptoms of P. falciparum malaria.

<i>Plasmodium</i> helical interspersed subtelomeric protein

The Plasmodium helical interspersed subtelomeric proteins (PHIST) or ring-infected erythrocyte surface antigens (RESA) are a family of protein domains found in the malaria-causing Plasmodium species. It was initially identified as a short four-helical conserved region in the single-domain export proteins, but the identification of this part associated with a DnaJ domain in P. falciparum RESA has led to its reclassification as the RESA N-terminal domain. This domain has been classified into three subfamilies, PHISTa, PHISTb, and PHISTc.

References

  1. Wrong, O; Bruce, LJ; Unwin, RJ; Toye, AM; Tanner, MJA (July 2002). "Band 3 mutations, distal renal tubular acidosis, and Southeast Asian ovalocytosis". Kidney International. 62 (1): 10–19. doi: 10.1046/j.1523-1755.2002.00417.x . PMID   12081559.
  2. Allen, S. J.; Clegg, J. B.; Alpers, M. P.; Mgone, C. S.; Peto, T. E.; O'Donnell, A.; Weatherall, D. J.; Alexander, N. D. (1999). "Prevention of cerebral malaria in children in Papua New Guinea by southeast Asian ovalocytosis band 3 -- Allen et al. 60 (6): 1056 -- American Journal of Tropical Medicine and Hygiene". The American Journal of Tropical Medicine and Hygiene. 60 (6): 1056–1060. doi: 10.4269/ajtmh.1999.60.1056 . PMID   10403343.
  3. Liu, S.C.; Palek, J; Nichols, PE; Derick, LH; Chiou, SS; Amato, D; Corbett, JD; Golan, DE (1 July 1995). "Molecular basis of altered red blood cell membrane properties in Southeast Asian ovalocytosis: role of the mutant band 3 protein in band 3 oligomerization and retention by the membrane skeleton". Blood. 86 (1): 349–58. doi: 10.1182/blood.V86.1.349.bloodjournal861349 . PMID   7795244.
  4. Mgone, Cs; Koki, G; Paniu, Mm; Kono, J; Bhatia, Kk; Genton, B; Alexander, Nd; Alpers, Mp (May 1996). "Occurrence of the erythrocyte band 3 (AE1) gene deletion in relation to malaria endemicity in Papua New Guinea". Transactions of the Royal Society of Tropical Medicine and Hygiene. 90 (3): 228–31. doi:10.1016/S0035-9203(96)90223-0. ISSN   0035-9203. PMID   8758056.
  5. RESERVED, INSERM US14-- ALL RIGHTS. "Orphanet: Southeast Asian ovalocytosis". www.orpha.net. Retrieved 2021-04-21.
  6. Paquette, A. M.; Harahap, A.; Laosombat, V.; Patnode, J. M.; Satyagraha, A.; Sudoyo, H.; Thompson, M. K.; Yusoff, N. M.; Wilder, J. A. (August 2015). "The evolutionary origins of Southeast Asian Ovalocytosis". Infection, Genetics and Evolution. 34: 153–159. doi: 10.1016/j.meegid.2015.06.002 . ISSN   1567-7257. PMID   26047685.
  7. Lavinya, Amanda A.; Razali, Ruzzieatul A.; Razak, Munirah A.; Mohamed, Rashidah; Moses, Emmanuel J.; Soundararajan, Meera; Bruce, Lesley J.; Eswaran, Jeyanthy; Yusoff, Narazah Mohd (2020-11-12). "Homozygous Southeast Asian Ovalocytosis in five live-born neonates". Haematologica. Online ahead of print (6): 1758–1761. doi: 10.3324/haematol.2020.268581 . ISSN   1592-8721. PMC   8168517 . PMID   33179475.