Hereditary persistence of fetal hemoglobin

Last updated
Hereditary persistence of fetal hemoglobin
Other namesHereditary persistence of foetal haemoglobin
Specialty Pediatrics

Hereditary persistence of fetal hemoglobin (HPFH) is a benign condition in which increased fetal hemoglobin (hemoglobin F, HbF) production continues well into adulthood, disregarding the normal shutoff point after which only adult-type hemoglobin should be produced. [1]

Contents

Presentation

The condition is asymptomatic, and is only noticed when screening for other hemoglobin disorders.[ citation needed ]

Sickle cell disease

In persons with sickle cell disease, high levels of fetal hemoglobin as found in a newborn or as found abnormally in persons with hereditary persistence of fetal hemoglobin, the HbF causes the sickle cell disease to be less severe. In essence the HbF inhibits polymerization of HbS. A similar mechanism occurs with persons who have sickle cell trait. Approximately 40% of the hemoglobin is in the HbS form while the rest is in normal HbA form. The HbA form interferes with HbS polymerization. [2]

Causes

HPFH can be caused by mutations in the β globin gene cluster, or the γ gene promoter region. [1] In addition HbF levels are influenced by polymorphisms in the BCL11A gene [3] and in the MYB gene enhancer. [4] In HPFH the percentage of HbF varies from 0.8-1.0% to about 30% of the total hemoglobin, but levels as high as 100% can be seen in homozygotes for delta beta thalassemia.[ citation needed ]

Diagnosis

Epidemiology

About 10% of the population has an HbF level >1.0%. [1] HPFH may alleviate the severity of certain hemoglobinopathies and thalassemias, and is selected for in populations with a high prevalence of these conditions (which in turn are often selected for in areas where malaria is endemic). Thus, it has been found to affect people of African and Greek descent. [5]

Related Research Articles

Hemoglobinopathy Medical condition

Hemoglobinopathy is the medical term for a group of inherited blood disorders and diseases that primarily affect red blood cells. They are single-gene disorders and, in most cases, they are inherited as autosomal co-dominant traits.

Thalassemia Medical condition

Thalassemias are inherited blood disorders characterized by decreased hemoglobin production. Symptoms depend on the type and can vary from none to severe. Often there is mild to severe anemia. Anemia can result in feeling tired and pale skin. There may also be bone problems, an enlarged spleen, yellowish skin, and dark urine. Slow growth may occur in children.

Fetal hemoglobin

Fetal hemoglobin, or foetal haemoglobin is the main oxygen carrier protein in the human fetus. Hemoglobin F is found in fetal red blood cells, and is involved in transporting oxygen from the mother's bloodstream to organs and tissues in the fetus. It is produced at around 6 weeks of pregnancy and the levels remain high after birth until the baby is roughly 2–4 months old. Hemoglobin F has a different composition from the adult forms of hemoglobin, which allows it to bind oxygen more strongly. This way, the developing fetus is able to retrieve oxygen from the mother's bloodstream, which occurs through the placenta found in the mother's uterus.

Hemoglobin A

Hemoglobin A (HbA), also known as adult hemoglobin, hemoglobin A1 or α2β2, is the most common human hemoglobin tetramer, accounting for over 97% of the total red blood cell hemoglobin. Hemoglobin is an oxygen-binding protein, found in erythrocytes, which transports oxygen from the lungs to the tissues. Hemoglobin A is the most common adult form of hemoglobin and exists as a tetramer containing two alpha subunits and two beta subunits (α2β2). Hemaglobin A2 (HbA2) is a less common adult form of hemoglobin and is composed of two alpha and two delta-globin subunits. This hemoglobin makes up 1-3% of hemoglobin in adults.

Hemoglobin C is an abnormal hemoglobin in which glutamic acid residue at the 6th position of the β-globin chain is replaced with a lysine residue due to a point mutation in the HBB gene. People with one copy of the gene for hemoglobin C do not experience symptoms, but can pass the abnormal gene on to their children. Those with two copies of the gene are said to have hemoglobin C disease and can experience mild anemia. It is possible for a person to have both the gene for hemoglobin S and the gene for hemoglobin C; this state is called hemoglobin SC disease, and is generally more severe than hemoglobin C disease, but milder than sickle cell anemia.

Sickle cell trait Medical condition

Sickle cell trait describes a condition in which a person has one abnormal allele of the hemoglobin beta gene, but does not display the severe symptoms of sickle cell disease that occur in a person who has two copies of that allele. Those who are heterozygous for the sickle cell allele produce both normal and abnormal hemoglobin.

Beta thalassemia Thalassemia characterized by the reduced or absent synthesis of the beta globin chains of hemoglobin

Beta thalassemias are a group of inherited blood disorders. They are forms of thalassemia caused by reduced or absent synthesis of the beta chains of hemoglobin that result in variable outcomes ranging from severe anemia to clinically asymptomatic individuals. Global annual incidence is estimated at one in 100,000. Beta thalassemias occur due to malfunctions in the hemoglobin subunit beta or HBB. The severity of the disease depends on the nature of the mutation.

Hemoglobin subunit beta Mammalian protein found in Homo sapiens

Hemoglobin subunit beta, is a globin protein, coded for by the HBB gene, which along with alpha globin (HBA), makes up the most common form of haemoglobin in adult humans, hemoglobin A (HbA). It is 147 amino acids long and has a molecular weight of 15,867 Da. Normal adult human HbA is a heterotetramer consisting of two alpha chains and two beta chains.

Hemoglobin variants

Hemoglobin variants are mutant forms of hemoglobin in a population, caused by variations in genetics. Some well-known hemoglobin variants such as sickle-cell anemia are responsible for diseases, and are considered hemoglobinopathies. Other variants cause no detectable pathology, and are thus considered non-pathological variants.

Hemoglobin subunit alpha

Hemoglobin subunit alpha, Hemoglobin, alpha 1, also known as HBA1, is a hemoglobin protein that in humans is encoded by the HBA1 gene.

HBG1

Hemoglobin subunit gamma-1 is a protein that in humans is encoded by the HBG1 gene.

HBE1

Hemoglobin subunit epsilon is a protein that in humans is encoded by the HBE1 gene.

The human embryonic haemoglobins were discovered in 1961. These include Hb-Gower 1, consisting of 2 zeta chains and 2 epsilon chains, and Hb-Gower 2, which consists of 2 αlpha-chains and 2 epsilon-chains, the zeta and epsilon chains being the embryonic haemoglobin chains.

Hemoglobin E Medical condition

Hemoglobin E (HbE) is an abnormal hemoglobin with a single point mutation in the β chain. At position 26 there is a change in the amino acid, from glutamic acid to lysine (E26K). Hemoglobin E is very common among people of Southeast Asian including Northeast Indian, East Asian descent.

Human genetic resistance to malaria refers to inherited changes in the DNA of humans which increase resistance to malaria and result in increased survival of individuals with those genetic changes. The existence of these genotypes is likely due to evolutionary pressure exerted by parasites of the genus Plasmodium which cause malaria. Since malaria infects red blood cells, these genetic changes are most common alterations to molecules essential for red blood cell function, such as hemoglobin or other cellular proteins or enzymes of red blood cells. These alterations generally protect red blood cells from invasion by Plasmodium parasites or replication of parasites within the red blood cell.

Hemoglobin Lepore syndrome Medical condition

Hemoglobin Lepore syndrome is typically an asymptomatic hemoglobinopathy, which is caused by an autosomal recessive genetic mutation. The Hb Lepore variant, consisting of two normal alpha globin chains (HBA) and two delta-beta globin fusion chains which occurs due to a "crossover" between the delta (HBD) and beta globin (HBB) gene loci during meiosis and was first identified in the Lepore family, an Italian-American family, in 1958. There are three varieties of Hb Lepore, Washington, Baltimore and Hollandia. All three varieties show similar electrophoretic and chromatographic properties and hematological findings bear close resemblance to those of the beta-thalassemia trait; a blood disorder that reduces the production of the iron-containing protein hemoglobin which carries oxygen to cells and which may cause anemia.

Sickle cell-beta thalassemia is an inherited blood disorder. The disease may range in severity from being relatively benign and like sickle cell trait to being similar to sickle cell disease.

HBS1 like translational GTPase

HBS1 like translational GTPase is a protein that in humans is encoded by the HBS1L gene.

Swee Lay Thein Malaysian haematologist

Swee Lay Thein is a Malaysian haematologist and physician-scientist who is Senior Investigator at the National Institutes of Health. She works on the pathophysiology of haemoglobin disorders including sickle cell disease and thalassemia.

Hemoglobin O (HbO) is a rare type of hemoglobin in which there is a substitution of glutamic acid by lysine as in hemoglobin C, but at different positions. Since the amino acid substitution can occur at different positions of the β-globin chain of the protein, there are several variants. In hemoglobin O-Arab (HbO-Arab) substitution occurs at position 121, while in hemoglobin O-Padova (HbO-Padova) it is at 11 position, and in hemoglobin O Indonesia (HbOIna) it is at 116.

References

  1. 1 2 3 Thein, SL; Menzel, S (May 2009). "Discovering the genetics underlying foetal haemoglobin production in adults". British Journal of Haematology. 145 (4): 455–67. doi: 10.1111/j.1365-2141.2009.07650.x . PMID   19344402.
  2. Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson; Aster, Jon (2009-05-28). Robbins and Cotran Pathologic Basis of Disease, Professional Edition: Expert Consult - Online (Robbins Pathology) (Kindle Locations 33411-33412). Elsevier Health. Kindle Edition.
  3. Basak, A; Sankaran, VG (March 2016). "Regulation of the fetal hemoglobin silencing factor BCL11A". Annals of the New York Academy of Sciences. 1368 (1): 25–30. Bibcode:2016NYASA1368...25B. doi:10.1111/nyas.13024. PMC   4870126 . PMID   26963603.
  4. Stadhouders, R; Aktuna, S; Thongjuea, S; Aghajanirefah, A; Pourfarzad, F; van Ijcken, W; Lenhard, B; Rooks, H; Best, S; Menzel, S; Grosveld, F; Thein, SL; Soler, E (April 2014). "HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers". The Journal of Clinical Investigation. 124 (4): 1699–710. doi:10.1172/JCI71520. PMC   3973089 . PMID   24614105.
  5. Friedman S, Schwartz E (January 1976). "Hereditary persistence of foetal haemoglobin with beta-chain synthesis in cis position (Ggamma-beta+-HPFH) in a negro family". Nature. 259 (5539): 138–40. Bibcode:1976Natur.259..138F. doi:10.1038/259138a0. PMID   1246351. S2CID   4183236.
Classification
D