Last updated
Diseases of the nervous system (1910) (14586639887).jpg
A man with traumatic hematomyelia after the fracture of the 11th thoracic vertebra. A line drawn over his navel marks the area of anesthesia.
  • /ˌpærəˈpliːdʒə/
Specialty Physical medicine and rehabilitation
Causes Spinal cord injury, congenital conditions affecting the spinal canal

Paraplegia is an impairment in motor or sensory function of the lower extremities. The word comes from Ionic Greek (παραπληγίη) "half-stricken".[ citation needed ] It is usually caused by spinal cord injury or a congenital condition that affects the neural (brain) elements of the spinal canal. The area of the spinal canal that is affected in paraplegia is either the thoracic, lumbar, or sacral regions. If four limbs are affected by paralysis, tetraplegia or quadriplegia is the correct term. If only one limb is affected, the correct term is monoplegia. Spastic paraplegia is a form of paraplegia defined by spasticity of the affected muscles, rather than flaccid paralysis.


The American Spinal Injury Association classifies spinal cord injury severity in the following manner. ASIA A is the complete loss of sensory function and motor skills below the injury. ASIA B is having some sensory function below the injury, but no motor function. In ASIA C, there is some motor function below the level of injury, but half of the muscles cannot move against gravity. In ASIA D, more than half of the muscles below the level of injury can move against gravity. ASIA E is the restoration of all neurologic function. [1]


Individuals with paraplegia can range in their level of disability, requiring treatments to vary from case to case. Rehabilitation aims to help the patient regain as much functionality and independence as possible. Physiotherapy may help to improve strength, range of motion, stretching and transfer skills. [2] Most paraplegics will be dependent on a wheelchair as a mode of transportation. [3] Activities of daily living (ADLs) can be quite challenging at first for those with a spinal cord injury (SCI). With the aid of physiotherapists and occupational therapists, individuals with an SCI can learn new skills and adapt previous ones to maximize independence, often living independently within the community. [4]

Regeneration of the spinal cord

Olfactory ensheathing cells (OEC) have been transplanted with success into the spinal cord of Polish man named Darek Fidyka, who was the victim of a knife attack that left him paraplegic in 2010. [5] In 2014, Fidyka underwent pioneering spinal surgery that used nerve grafts, from his ankle, to 'bridge the gap' in his severed spinal cord and OEC's to stimulate the spinal cord cells. The surgery was performed in Poland in collaboration with Prof. Geoff Raisman, chair of neural regeneration at University College London's Institute of Neurology, and his research team. The olfactory cells were taken from the patient's olfactory bulbs in his brain and then grown in the lab, these cells were then injected above and below the impaired spinal tissue. [6] Fidyka regained sensory and motor function in his lower limbs, notably on the side of the transplanted OEC's. Fidyka first noticed the success three months after the procedure, when his left thigh started gaining muscle mass. MRIs suggest that the gap in his spinal cord has been closed up. He is believed to be the first person in the world to recover sensory function from a complete severing of the spinal nerves. [5] [6]

See also

Related Research Articles

Hemiparesis, or unilateral paresis, is weakness of one entire side of the body. Hemiplegia is, in its most severe form, complete paralysis of half of the body. Hemiparesis and hemiplegia can be caused by different medical conditions, including congenital causes, trauma, tumors, or stroke.

Paralysis is a loss of motor function in one or more muscles. Paralysis can be accompanied by a loss of feeling in the affected area if there is sensory damage as well as motor. In the United States, roughly 1 in 50 people have been diagnosed with some form of permanent or transient paralysis. The word comes from the Greek παράλυσις, "disabling of the nerves", itself from παρά (para), "beside, by" and λύσις (lysis), "making loose". A paralysis accompanied by involuntary tremors is usually called "palsy".

Spasticity is a feature of altered skeletal muscle performance with a combination of paralysis, increased tendon reflex activity, and hypertonia. It is also colloquially referred to as an unusual "tightness", stiffness, or "pull" of muscles.

Tetraplegia, also known as quadriplegia, is paralysis caused by illness or injury that results in the partial or total loss of use of all four limbs and torso; paraplegia is similar but does not affect the arms. The loss is usually sensory and motor, which means that both sensation and control are lost. The paralysis may be flaccid or spastic.

Hereditary spastic paraplegia (HSP) is a group of inherited diseases whose main feature is a progressive gait disorder. The disease presents with progressive stiffness (spasticity) and contraction in the lower limbs. HSP is also known as hereditary spastic paraparesis, familial spastic paraplegia, French settlement disease, Strumpell disease, or Strumpell-Lorrain disease. The symptoms are a result of dysfunction of long axons in the spinal cord. The affected cells are the primary motor neurons; therefore, the disease is an upper motor neuron disease. HSP is not a form of cerebral palsy even though it physically may appear and behave much the same as spastic diplegia. The origin of HSP is different from cerebral palsy. Despite this, some of the same anti-spasticity medications used in spastic cerebral palsy are sometimes used to treat HSP symptoms.

Pyramidal tracts

The pyramidal tracts include both the corticobulbar tract and the corticospinal tract. These are aggregations of efferent nerve fibers from the upper motor neurons that travel from the cerebral cortex and terminate either in the brainstem (corticobulbar) or spinal cord (corticospinal) and are involved in the control of motor functions of the body.

Functional electrical stimulation Technique that uses low-energy electrical pulses

Functional electrical stimulation (FES) is a technique that uses low-energy electrical pulses to artificially generate body movements in individuals who have been paralyzed due to injury to the central nervous system. More specifically, FES can be used to generate muscle contraction in otherwise paralyzed limbs to produce functions such as grasping, walking, bladder voiding and standing. This technology was originally used to develop neuroprostheses that were implemented to permanently substitute impaired functions in individuals with spinal cord injury (SCI), head injury, stroke and other neurological disorders. In other words, a person would use the device each time he or she wanted to generate a desired function. FES is sometimes also referred to as neuromuscular electrical stimulation (NMES).

Spinal cord injury Injury to the main nerve bundle in the back of humans

A spinal cord injury (SCI) is damage to the spinal cord that causes temporary or permanent changes in its function. Symptoms may include loss of muscle function, sensation, or autonomic function in the parts of the body served by the spinal cord below the level of the injury. Injury can occur at any level of the spinal cord and can be complete, with a total loss of sensation and muscle function at lower sacral segments, or incomplete, meaning some nervous signals are able to travel past the injured area of the cord up to the Sacral S4-5 spinal cord segments. Depending on the location and severity of damage, the symptoms vary, from numbness to paralysis, including bowel or bladder incontinence. Long term outcomes also range widely, from full recovery to permanent tetraplegia or paraplegia. Complications can include muscle atrophy, loss of voluntary motor control, spasticity, pressure sores, infections, and breathing problems.

Monoplegia is paralysis of a single limb, usually an arm. Common symptoms associated with monoplegic patients are weakness, numbness, and pain in the affected limb. Monoplegia is a type of paralysis that falls under hemiplegia. While hemiplegia is paralysis of half of the body, monoplegia is localized to a single limb or to a specific region of the body. Monoplegia of the upper limb is sometimes referred to as brachial monoplegia, and that of the lower limb is called crural monoplegia. Monoplegia in the lower extremities is not as common of an occurrence as in the upper extremities. Monoparesis is a similar, but less severe, condition because one limb is very weak, not paralyzed. For more information, see paresis.

Central cord syndrome Human spinal cord disorder

Central cord syndrome (CCS) is the most common form of cervical spinal cord injury. It is characterized by loss of motion and sensation in arms and hands. It usually results from trauma which causes damage to the neck, leading to major injury to the central corticospinal tract of the spinal cord. The syndrome is more common in people over the age of 50 because osteoarthritis in the neck region causes weakening of the vertebrae. CCS most frequently occurs among older persons with cervical spondylosis, however, it also may occur in younger individuals.

Spastic quadriplegia, also known as spastic tetraplegia, is a subset of spastic cerebral palsy that affects all four limbs.

Spinal cord Long, tubular central nervous system structure in the vertebral column

The spinal cord is a long, thin, tubular structure made up of nervous tissue, which extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column. It encloses the central canal of the spinal cord, which contains cerebrospinal fluid. The brain and spinal cord together make up the central nervous system (CNS). In humans, the spinal cord begins at the occipital bone, passing through the foramen magnum and entering the spinal canal at the beginning of the cervical vertebrae. The spinal cord extends down to between the first and second lumbar vertebrae, where it ends. The enclosing bony vertebral column protects the relatively shorter spinal cord. It is around 45 cm (18 in) long in adult men and around 43 cm (17 in) long in adult women. The diameter of the spinal cord ranges from 13 mm in the cervical and lumbar regions to 6.4 mm in the thoracic area.

Myelomalacia Medical condition

Myelomalacia is a pathological term referring to the softening of the spinal cord. Possible causes of myelomalacia include cervical myelopathy, hemorrhagic infarction, or acute injury, such as that caused by intervertebral disc extrusion.

Olfactory ensheathing cell Type of macroglia that ensheath unmyelinated olfactory neurons

Olfactory ensheathing cells (OECs), also known as olfactory ensheathing glia or olfactory ensheathing glial cells, are a type of macroglia found in the nervous system. They are also known as olfactory Schwann cells, because they ensheath the non-myelinated axons of olfactory neurons in a similar way to which Schwann cells ensheath non-myelinated peripheral neurons. They also share the property of assisting axonal regeneration.

Upper motor neuron syndrome (UMNS) is the motor control changes that can occur in skeletal muscle after an upper motor neuron lesion.

Lumbar anterior root stimulator Neuroprosthesis

A lumbar anterior root stimulator is a type of neuroprosthesis used in patients suffering from a spinal cord injury or to treat some forms of chronic spinal pain. More specifically, the root stimulator can be used in patients who have lost proper bowel function due to damaged neurons related to gastrointestinal control and potentially allow paraplegics to exercise otherwise paralyzed leg muscles.

Darek Fidyka is a Polish firefighter and recovering paraplegic who became the first person in history to verifiably recover sensory and motor function after the complete severing of his spinal cord. Having been paralysed from the chest down in a knife attack in 2010, Fidyka regained the ability to walk in 2014 after receiving a pioneering regenerative treatment from a British-advised Polish surgical team.

Paweł Tabakow is a Polish neurosurgeon who is known for prepared and performing the operation that allowed Darek Fidyka to recover sensory and motor function after the complete severing of his spinal cord. Tabakow has claimed that an Indian ambassador and other people from round the world have contacted him about performing similar treatments.

Spinal cord injury research seeks new ways to cure or treat spinal cord injury in order to lessen the debilitating effects of the injury in the short or long term. There is no cure for SCI, and current treatments are mostly focused on spinal cord injury rehabilitation and management of the secondary effects of the condition. Two major areas of research include neuroprotection, ways to prevent damage to cells caused by biological processes that take place in the body after the insult, and neuroregeneration, regrowing or replacing damaged neural circuits.


  1. "Standard Neurological Classification of Spinal Cord Injury" (PDF). American Spinal Injury Association & ISCOS. Archived from the original on June 18, 2011
  2. Taylor-Schroeder S, LaBarbera J, McDowell S, et al. (2011). "The SCIRehab project: treatment time spent in SCI rehabilitation. Physical therapy treatment time during inpatient spinal cord injury rehabilitation". J Spinal Cord Med. 34 (2): 149–61. doi:10.1179/107902611x12971826988057. PMC   3066500 . PMID   21675354.
  3. Ozelie R, Sipple C, Foy T, et al. (2009). "SCIRehab Project series: the occupational therapy taxonomy". J Spinal Cord Med. 32 (3): 283–97. doi:10.1080/10790268.2009.11760782. PMC   2718817 . PMID   19810630.
  4. Tzonichaki I, Kleftaras G (2002). "Paraplegia from spinal cord injury: self-esteem, loneliness, and life satisfaction". OTJR: Occupation, Participation and Health. 22 (3): 96–103. doi:10.1177/153944920202200302. S2CID   145347578.
  5. 1 2 Walsh, Fergus (21 October 2014). "Paralysed man walks again after cell transplant". Retrieved 26 October 2014.
  6. 1 2 Quinn, Ben (21 October 2014). "Paralysed man Darek Fidyka walks again after pioneering surgery". Retrieved 26 October 2014. The 38-year-old, who is believed to be the first person in the world to recover from complete severing of the spinal nerves, can now walk with a frame and has been able to resume an independent life, even to the extent of driving a car, while sensation has returned to his lower limbs.