Hypermobility (joints)

Last updated
Hypermobility
Other nameshyperlaxity, benign joints hypermobility syndrome (BJHS), hypermobility syndrome (HMS) [1]
Hypermobile fingers and thumb.jpg
Hypermobile fingers and thumb
Specialty Rheumatology, Medical genetics

Hypermobility, also known as double-jointedness, describes joints that stretch farther than normal. For example, some hypermobile people can bend their thumbs backwards to their wrists and bend their knee joints backwards, put their leg behind the head or perform other contortionist "tricks". It can affect one or more joints throughout the body.

Contents

Hypermobile joints are common and occur in about 10 to 25% of the population, [2] but in a minority of people, pain and other symptoms are present. This may be a sign of hypermobility spectrum disorder (HSD). Hypermobile joints are a feature of genetic connective tissue disorders such as hypermobility spectrum disorder or Ehlers–Danlos syndromes (EDS). Until new diagnostic criteria were introduced, hypermobility syndrome was sometimes considered identical to hypermobile Ehlers–Danlos syndrome (hEDS), formerly called EDS Type 3. As no genetic test can distinguish the two conditions and because of the similarity of the diagnostic criteria and recommended treatments, many experts recommend they be recognized as the same condition until further research is undertaken. [3] [4]

In 2016 the diagnostic criteria for hEDS were re-written to be more restrictive, with the intent of narrowing the pool of hEDS patients in the hope of making it easier to identify a common genetic mutation, hEDS being the only EDS variant without a diagnostic DNA test. At the same time, joint hypermobility syndrome was renamed as hypermobility spectrum disorder and redefined as a hypermobility disorder that does not meet the diagnostic criteria for hEDS, other types of Ehlers–Danlos Syndrome, or other heritable Connective Tissue Disorder (such as Marfan's, Loeys–Dietz, or osteogenesis imperfecta).

Signs and symptoms

People with Joint Hypermobility Syndrome may develop other conditions caused by their unstable joints. [5] [6] These conditions include:

Associated conditions

Those with hypermobile joints are more likely to have ADHD, autism, dyspraxia, fibromyalgia, hereditary connective tissue disorders, mitral valve prolapse, and anxiety disorders such as panic disorder. [8] [9] [10] [2] [11]

Causes

Hypermobile thumbs Double jointed thumbs.jpg
Hypermobile thumbs
A hypermobile thumb (also called Hitchhiker's thumb) Hitchhikers thumb.jpg
A hypermobile thumb (also called Hitchhiker's thumb)

Hypermobility generally results from one or more of the following:

These abnormalities cause abnormal joint stress, meaning that the joints can wear out, leading to osteoarthritis.

The condition tends to run in families, suggesting a genetic basis for at least some forms of hypermobility. The term double jointed is often used to describe hypermobility; however, the name is a misnomer and should not be taken literally, as hypermobile joints are not doubled/extra in any sense.

Most people have hypermobility with no other symptoms. Approximately 5% of the healthy population have one or more hypermobile joints. However, people with "joint hypermobility syndrome" are subject to many difficulties. For example, their joints may be easily injured, be more prone to complete dislocation due to the weakly stabilized joint and they may develop problems from muscle fatigue (as muscles must work harder to compensate for weakness in the ligaments that support the joints). Hypermobility syndrome can lead to chronic pain or even disability in severe cases. Musical instrumentalists with hypermobile fingers may have difficulties when fingers collapse into the finger locking position. Or, conversely, they may display superior abilities due to their increased range of motion for fingering, such as in playing a violin or cello.[ citation needed ]

Hypermobility may be symptomatic of a serious medical condition, such as Stickler syndrome, Ehlers–Danlos syndrome, [12] Marfan syndrome, [12] Loeys–Dietz syndrome, rheumatoid arthritis, osteogenesis imperfecta, [12] lupus, polio, Fragile X syndrome, Down syndrome, [12] Morquio syndrome, cleidocranial dysostosis or myotonia congenita.

Hypermobility has been associated with chronic fatigue syndrome and fibromyalgia. Hypermobility causes physical trauma (in the form of joint dislocations, joint subluxations, joint instability, sprains, etc.). These conditions often, in turn, cause physical and/or emotional trauma and are possible triggers for conditions such as fibromyalgia. [13]

Women with hypermobility may experience particular difficulties when pregnant. During pregnancy, the body releases relaxin and certain hormones that alter ligament physiology, easing the stretching needed to accommodate fetal growth as well as the birthing process. The combination of hypermobility and pregnancy-related pelvic girdle during pregnancy can be debilitating. The pregnant woman with hypermobile joints will often be in significant pain as muscles and joints adapt to the pregnancy. Pain often inhibits such women from standing or walking during pregnancy. Some pregnant women who have one of these disorders find they need to use a bedpan and/or a wheelchair during pregnancy. Some may experience permanent disability. [ citation needed ]

Symptoms of hypermobility include a dull but intense pain around the knee and ankle joints and the soles of the feet. The pain and discomfort affecting these body parts can be alleviated by using custom orthoses.

Syndromes

Hypermobile metacarpo-phalangeal joints Aa doublejointedfingers.jpg
Hypermobile metacarpo-phalangeal joints
Hyperextension of the thumb Hypertension Hypermobilitat.jpg
Hyperextension of the thumb
Hyperextension of the hand Hypermobility-02.jpg
Hyperextension of the hand

Hypermobility syndrome is generally considered to comprise hypermobility together with other symptoms, such as myalgia and arthralgia. It is relatively common among children and affects more females than males.

Current thinking suggests four causative factors:

Hypermobility can also be caused by connective tissue disorders, such as Ehlers–Danlos syndrome (EDS) and Marfan syndrome. Joint hypermobility is a common symptom for both. EDS has numerous sub-types; most include hypermobility in some degree. When hypermobility is the main symptom, then EDS/hypermobility type is likely. People with EDS-HT experience frequent joint dislocations and subluxations (partial/incomplete dislocations), with or without trauma, sometimes spontaneously. Commonly, hypermobility is dismissed by medical professionals as nonsignificant. [16]

Ehlers–Danlos syndrome hypermobility type

Joint hypermobility is often correlated with hypermobile Ehlers–Danlos syndrome (hEDS, known also by EDS type III or Ehlers–Danlos syndrome hypermobility type (EDS-HT)). Ehlers–Danlos syndrome is a genetic disorder caused by mutations or hereditary genes, but the genetic defect that produced hEDS is largely unknown. In conjunction with joint hypermobility, a common symptom for hEDS is smooth, velvety, and stretchy skin; a symptom largely unique to the syndrome. When diagnosing hEDS, the Beighton Criteria are used, but are not always able to distinguish between generalized hypermobility and hEDS. [17]

Ehlers–Danlos hypermobility type can have severe musculoskeletal effects, including:

Diagnosis

Joint hypermobility syndrome shares symptoms with other conditions such as Marfan syndrome, Ehlers-Danlos Syndrome, and osteogenesis imperfecta. Experts in connective tissue disorders formally agreed that severe forms of Hypermobility Syndrome and mild forms of Ehlers-Danlos Syndrome Hypermobility Type are the same disorder. [ citation needed ]

Generalized hypermobility is a common feature in all these hereditary connective tissue disorders and many features overlap, but often features are present that enable differentiating these disorders. [18] The inheritance pattern of Ehlers-Danlos syndrome varies by type. The arthrochalasia, classic, hypermobility and vascular forms usually have an autosomal dominant pattern of inheritance. Autosomal dominant inheritance occurs when one copy of a gene in each cell is sufficient to cause a disorder. In some cases, an affected person inherits the mutation from one affected parent. Other cases result from new (sporadic) gene mutations. Such cases can occur in people with no history of the disorder in their family.

The dermatosparaxis and kyphoscoliosis types of EDS and some cases of the classic and hypermobility forms, are inherited in an autosomal recessive pattern. In autosomal recessive inheritance, two copies of the gene in each cell are altered. Most often, both parents of an individual with an autosomal recessive disorder are carriers of one copy of the altered gene but do not show signs and symptoms of the disorder.

Beighton criteria

Beighton score criteria: one point for each elbow and knee that hyperextends by 10 degrees or more (4 points), one for each little finger that bends back by 90 degrees (2 points), one for each thumb which can be touched to the forearm (2 points), and one for touching the floor with the palms. Ehlers-Danlos skala Beighton'a.png
Beighton score criteria: one point for each elbow and knee that hyperextends by 10 degrees or more (4 points), one for each little finger that bends back by 90 degrees (2 points), one for each thumb which can be touched to the forearm (2 points), and one for touching the floor with the palms.

As of July 2000, hypermobility was diagnosed using the Beighton criteria. In 2017, the criteria changed, but still involve the Beighton score. [20] The Beighton criteria do not replace the Beighton score but instead use the previous score in conjunction with other symptoms and criteria. HMS is diagnosed in the presence of either two major criteria, one major and two minor criteria, or four minor criteria. The criteria are:

Major criteria

  • A Beighton score of 5/9 or more (either current or historic)
  • Arthralgia for more than three months in four or more joints

Minor criteria

  • A Beighton score of 1, 2 or 3/9 (0, 1, 2 or 3 if aged 50+)
  • Arthralgia (> 3 months) in one to three joints or back pain (> 3 months), spondylosis, spondylolysis/spondylolisthesis.
  • Dislocation/subluxation in more than one joint, or in one joint on more than one occasion.
  • Soft tissue rheumatism. > 3 lesions (e.g. epicondylitis, tenosynovitis, bursitis).
  • Marfanoid habitus (tall, slim, span/height ratio >1.03, upper: lower segment ratio less than 0.89, arachnodactyly; positive Steinberg finger / Walker wrist signs).
  • Abnormal skin: striae, hyperextensibility, thin skin, papyraceous scarring.

Beighton score

The Beighton score is an edited version of the Carter/Wilkinson scoring system which was used for many years as an indicator of widespread hyper-mobility. Medical professionals varied in their interpretations of the results; some accepting as low as 1/9 and some 4/9 as a diagnosis of HMS. Therefore, it was incorporated, with clearer guidelines, into the Beighton Criteria. The Beighton score is measured by adding 1 point for each of the following:

Beighton test in a person with a 9/9 score Hypermobility Beighton Score.png
Beighton test in a person with a 9/9 score

Treatments

Physical therapy

It is important that hypermobile individuals remain fit – even more so than the average individual – to prevent recurrent injuries. Regular exercise and exercise that is supervised by a physician and physical therapist can reduce symptoms because strong muscles increase dynamic joint stability. Low-impact exercise such as closed kinetic chain exercises are usually recommended as they are less likely to cause injury when compared to high-impact exercise or contact sports.

Heat and cold treatment can help temporarily to relieve the pain of aching joints and muscles but does not address the underlying problems.

Medication

Medication is not the primary treatment for hypermobility, but can be used as an adjunct treatment for related joint pain. Nonsteroidal anti-inflammatory drugs are the primary medications of choice. Narcotics are not recommended for primary or long-term treatment and are reserved for short-term use after acute injury.

Lifestyle modification

For some people with hypermobility, lifestyle changes decrease symptom severity. In general, activity that increases pain is to be avoided. For example:

Other treatments

Epidemiology

Hypermobile joints occur in about 10 to 25% of the population. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Marfan syndrome</span> Genetic disorder involving connective tissue

Marfan syndrome (MFS) is a multi-systemic genetic disorder that affects the connective tissue. Those with the condition tend to be tall and thin, with long arms, legs, fingers, and toes. They also typically have exceptionally flexible joints and abnormally curved spines. The most serious complications involve the heart and aorta, with an increased risk of mitral valve prolapse and aortic aneurysm. The lungs, eyes, bones, and the covering of the spinal cord are also commonly affected. The severity of the symptoms is variable.

<span class="mw-page-title-main">Myalgia</span> Muscle pain

Myalgia is the medical term for muscle pain. Myalgia is a symptom of many diseases. The most common cause of acute myalgia is the overuse of a muscle or group of muscles; another likely cause is viral infection, especially when there has been no trauma.

<span class="mw-page-title-main">Ehlers–Danlos syndrome</span> Group of genetic connective tissues disorders

Ehlers–Danlos syndromes (EDS) are a group of 13 genetic connective-tissue disorders. Symptoms often include loose joints, joint pain, stretchy velvety skin, and abnormal scar formation. These may be noticed at birth or in early childhood. Complications may include aortic dissection, joint dislocations, scoliosis, chronic pain, or early osteoarthritis. The current classification was last updated in 2017, when a number of rarer forms of EDS were added.

<span class="mw-page-title-main">Joint dislocation</span> Medical injury

A joint dislocation, also called luxation, occurs when there is an abnormal separation in the joint, where two or more bones meet. A partial dislocation is referred to as a subluxation. Dislocations are often caused by sudden trauma on the joint like an impact or fall. A joint dislocation can cause damage to the surrounding ligaments, tendons, muscles, and nerves. Dislocations can occur in any major joint or minor joint. The most common joint dislocation is a shoulder dislocation.

A connective tissue disease is a disease which involves damage to, or destruction of, any type of connective tissue in the body. Depending on the specific disease, the affected tissue(s) may be a single specific type, a group of several related tissues, or a wide variety of unrelated types of connective tissue. Some of the most common connective tissue diseases involve injury to collagen and elastin as a result of inflammation. Many connective tissue diseases are strongly connected to autoimmune disease processes.

<span class="mw-page-title-main">Ligamentous laxity</span> Looseness of the ligaments

Ligamentous laxity, or ligament laxity, is a cause of chronic body pain characterized by loose ligaments. When this condition affects joints in the entire body, it is called generalized joint hypermobility, which occurs in about ten percent of the population, and may be genetic. Loose ligaments can appear in a variety of ways and levels of severity. It also does not always affect the entire body. One could have loose ligaments of the feet, but not of the arms.

<span class="mw-page-title-main">Hypermobility spectrum disorder</span> Heritable connective tissue disorder

Hypermobility spectrum disorder (HSD), related to earlier diagnoses such as hypermobility syndrome (HMS), and joint hypermobility syndrome (JHS) is a heritable connective tissue disorder that affects joints and ligaments. Different forms and sub-types have been distinguished, but it does not include asymptomatic joint hypermobility, sometimes known as double-jointedness.

<span class="mw-page-title-main">Larsen syndrome</span> Medical condition

Larsen syndrome (LS) is a congenital disorder discovered in 1950 by Larsen and associates when they observed dislocation of the large joints and face anomalies in six of their patients. Patients with Larsen syndrome normally present with a variety of symptoms, including congenital anterior dislocation of the knees, dislocation of the hips and elbows, flattened facial appearance, prominent foreheads, and depressed nasal bridges. Larsen syndrome can also cause a variety of cardiovascular and orthopedic abnormalities. This rare disorder is caused by a genetic defect in the gene encoding filamin B, a cytoplasmic protein that is important in regulating the structure and activity of the cytoskeleton. The gene that influences the emergence of Larsen syndrome is found in chromosome region, 3p21.1-14.1, a region containing human type VII collagen gene. Larsen syndrome has recently been described as a mesenchyme disorder that affects the connective tissue of an individual. Autosomal dominant and recessive forms of the disorder have been reported, although most cases are autosomal dominant. Reports have found that in Western societies, Larsen syndrome can be found in one in every 100,000 births, but this is most likely an underestimate because the disorder is frequently unrecognized or misdiagnosed.

<span class="mw-page-title-main">Loeys–Dietz syndrome</span> Medical condition

Loeys–Dietz syndrome (LDS) is an autosomal dominant genetic connective tissue disorder. It has features similar to Marfan syndrome and Ehlers–Danlos syndrome. The disorder is marked by aneurysms in the aorta, often in children, and the aorta may also undergo sudden dissection in the weakened layers of the wall of the aorta. Aneurysms and dissections also can occur in arteries other than the aorta. Because aneurysms in children tend to rupture early, children are at greater risk for dying if the syndrome is not identified. Surgery to repair aortic aneurysms is essential for treatment.

<span class="mw-page-title-main">Sack–Barabas syndrome</span> Medical condition

Sack–Barabas syndrome is an older name for the medical condition vascular Ehlers–Danlos syndrome (vEDS). It affects the body's blood vessels and organs, making them prone to rupture.

<span class="mw-page-title-main">MASS syndrome</span> Medical condition

MASS syndrome is a medical disorder of the connective tissue similar to Marfan syndrome. MASS stands for mitral valve prolapse, aortic root diameter at upper limits of normal for body size, stretch marks of the skin, and skeletal conditions similar to Marfan syndrome. It is caused by a mutation in the FBN1 gene, which encodes fibrillin-1. Fibrillin-1 is an extracellular matrix protein that is found in microfibrils; defects in the fibrillin-1 protein cause the malfunctioning of microfibrils, which results in improper stretching of ligaments, blood vessels, and skin.

<span class="mw-page-title-main">Bethlem myopathy</span> Medical condition

Bethlem myopathy is predominantly an autosomal dominant myopathy, classified as a congenital form of limb-girdle muscular dystrophy. There are two types of Bethlem myopathy, based on which type of collagen is affected.

Congenital contractural arachnodactyly (CCA), also known as Beals-Hecht syndrome, is a rare autosomal dominant congenital connective tissue disorder. As with Marfan syndrome, people with CCA typically have an arm span that is greater than their height and very long fingers and toes. However, Beals and Hecht discovered in 1972 that, unlike Marfan's, CCA is caused by mutations to the fibrillin-2 (FBN2) gene rather than the fibrillin-1 (FBN1) gene.

Basilar invagination is invagination (infolding) of the base of the skull that occurs when the top of the C2 vertebra migrates upward. It can cause narrowing of the foramen magnum. It also may press on the lower brainstem.

Marfanoid is a constellation of signs resembling those of Marfan syndrome, including long limbs, with an arm span that is at least 1.03 of the height of the individual, and a crowded oral maxilla, sometimes with a high arch in the palate, arachnodactyly, and hyperlaxity.

<span class="mw-page-title-main">Genu recurvatum</span> Orthopedic deformity

Genu recurvatum is a deformity in the knee joint, so that the knee bends backwards. In this deformity, excessive extension occurs in the tibiofemoral joint. Genu recurvatum is also called knee hyperextension and back knee. This deformity is more common in women and people with familial ligamentous laxity. Hyperextension of the knee may be mild, moderate or severe.

<span class="mw-page-title-main">Daniel Browning Smith</span> American contortionist and actor

Daniel Browning Smith, also known as The Rubberboy, is an American contortionist, actor, television host, comedian, sports entertainer, and a stuntman, who holds the title of the most flexible person in history, owning a total of seven Guinness World Records. Smith owes his flexibility to the genetic condition hypermobile Ehlers–Danlos syndrome.

<span class="mw-page-title-main">Nevo syndrome</span> Medical condition

Nevo syndrome is a rare autosomal recessive disorder that usually begins during the later stages of pregnancy. Nevo syndrome is caused by a NSD1 deletion, which encodes for methyltransferase involved with chromatin regulation. The exact mechanism as to how the chromatin is changed is unknown and still being studied. Nevo syndrome is an example of one of about twelve overgrowth syndromes known today. Overgrowth syndromes are characterized with children experiencing a significant overgrowth during pregnancy and also excessive postnatal growth. Studies concerning Nevo syndrome have shown a similar relation to Ehlers–Danlos syndrome, a connective tissue disorder. Nevo syndrome is associated with kyphosis, an abnormal increased forward rounding of the spine, joint laxity, postpartum overgrowth, a highly arched palate, undescended testes in males, low-set ears, increased head circumference, among other symptoms.

<span class="mw-page-title-main">Ehlers-Danlos Society</span> International patient advocacy and support organization

The Ehlers–Danlos Society is an international nonprofit organization dedicated to patient support, scientific research, advocacy, and increasing awareness for the Ehlers–Danlos syndromes (EDS) and hypermobility spectrum disorder (HSD). The society has organized multiple events around the world in an attempt to raise awareness for EDS and HSD. These events include a rally in Baltimore's Inner Harbor, and a conference in India. The society also organizes symposiums dedicated to research on EDS and HSD. The 2016 symposium resulted in the reclassification of Ehlers–Danlos subtypes.

Craniocervical instability (CCI) is a medical condition characterized by excessive movement of the vertebra at the atlanto-occipital joint and the atlanto-axial joint located between the skull and the top two vertebra, known as C1 and C2. The condition can cause neural injury and compression of nearby structures, including the brain stem, spinal cord, vagus nerve, and vertebral artery, resulting in a constellation of symptoms.

References

  1. Federman CA, Dumesic DA, Boone WR, Shapiro SS (1990). "Relative efficiency of therapeutic donor insemination using a luteinizing hormone monitor". Fertil Steril. 54 (3): 489–92. doi: 10.1016/S0015-0282(16)53767-4 . PMID   2204553.
  2. 1 2 3 Garcia-Campayo, J; Asso, E; Alda, M (February 2011). "Joint hypermobility and anxiety: the state of the art". Current Psychiatry Reports. 13 (1): 18–25. doi:10.1007/s11920-010-0164-0. PMID   20963520. S2CID   24237928.
  3. "Hypermobility Syndromes Association » JHS v EDS Hypermobility- Same Thing?". hypermobility.org. Archived from the original on 2016-11-25. Retrieved 2016-11-24.
  4. "Ehlers Danlos UK – JHS vs EDS". www.ehlers-danlos.org. Archived from the original on 2016-11-25. Retrieved 2016-11-24.
  5. "Joint hypermobility - NHS Choices". NHS choices. Retrieved 2016-12-02.
  6. "Clinician's Guide to JHS". hypermobility.org. Hypermobility Syndromes Association. Archived from the original on 2016-11-15. Retrieved 2016-12-02.
  7. "1.00 Musculoskeletal System-Adult". SSA.gov. Social Security Administration. 2013-05-31. Retrieved 2014-03-06.
  8. Glans, Martin R; Nils, Thelin (8 February 2022). "The Relationship Between Generalised Joint Hypermobility and Autism Spectrum Disorder in Adults: A Large, Cross-Sectional, Case Control Comparison". Frontiers in Psychiatry. 12: 803334. doi: 10.3389/fpsyt.2021.803334 . PMC   8861852 . PMID   35211037.
  9. Glans, Martin R; Nils, Thelin (November 2021). "Association between adult attention-deficit hyperactivity disorder and generalised joint hypermobility: A cross-sectional case control comparison". Journal of Psychiatric Research. 143: 334–340. doi: 10.1016/j.jpsychires.2021.07.006 . PMID   34560594.
  10. Piedimonte, Caterina; Penge, Roberta (September 2018). "Exploring relationships between joint hypermobility and neurodevelopment in children (4-13 years) with hereditary connective tissue disorders and developmental coordination disorder". American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 177 (6): 546–556. doi:10.1002/ajmg.b.32646. PMID   30070022. S2CID   51895371 . Retrieved 7 June 2023.
  11. Araújo, C. G. S.; Chaves, C. P. G. (23 September 2005). "Adult women with mitral valve prolapse are more flexible". British Journal of Sports Medicine. 39 (10): 720–724. doi:10.1136/bjsm.2004.014324. ISSN   0306-3674. PMC   1725042 . PMID   16183767.
  12. 1 2 3 4 Simpson, MR (September 2006). "Benign joint hypermobility syndrome: evaluation, diagnosis, and management". The Journal of the American Osteopathic Association. 106 (9): 531–536. PMID   17079522. Archived from the original on 2013-03-02.
  13. "Fibromyalgia: Possible Causes and Risk Factors". Webmd.com. 2008-05-21. Retrieved 2014-03-06.
  14. Keer, Rosemary; Rodney Grahame (2003). Hypermobility syndrome : recognition and management for physiotherapists. Edinburgh: Butterworth-Heinemann. p. 71. ISBN   978-0-7506-5390-9. Asian Indians were found by Wordsworth et al. (1987) to be significantly more mobile than English Caucasians.[ permanent dead link ]
  15. "Joint hypermobility". Arthritis Research UK. Archived from the original on 2009-04-08.
  16. Levy, Howard (2004). “The Ehlers Danlos Syndrome, Hypermobility Type.” Archived 2013-10-19 at the Wayback Machine University of Washington: NIH. Retrieved from
  17. T., Tinkle, Brad (2010). Joint hypermobility handbook : a guide for the issues & management of Ehlers-Danlos syndrome hypermobility type and the hypermobility syndrome. Greens Fork, IN: Left Paw Press. ISBN   9780982577158. OCLC   672037902.{{cite book}}: CS1 maint: multiple names: authors list (link)
  18. Zweers MC, Kucharekova M, Schalkwijk J (March 2005). "Tenascin-X: a candidate gene for benign joint hypermobility syndrome and hypermobility type Ehlers-Danlos syndrome?". Ann. Rheum. Dis. 64 (3): 504–5. doi:10.1136/ard.2004.026559. PMC   1755395 . PMID   15708907.
  19. File:Hiperlaxitud.jpg
  20. Grahame R. The revised (Beighton 1998) criteria for the diagnosis of benign joint hypermobility syndrome (BJHS). J Rheumatol. 2000;27:1777–1779