Hypermobility (joints)

Last updated
Other nameshyperlaxity, benign joints hypermobility syndrome (BJHS), hypermobility syndrome (HMS) [1]
Hypermobile fingers and thumb.jpg
Hypermobile fingers and thumb
Specialty Rheumatology

Hypermobility, also known as double-jointedness, describes joints that stretch farther than normal. For example, some hypermobile people can bend their thumbs backwards to their wrists, bend their knee joints backwards, put their leg behind the head or perform other contortionist "tricks." It can affect one or more joints throughout the body.


Hypermobile joints are common and occur in about 10 to 25% of the population, [2] but in a minority of people, pain and other symptoms are present. This may be a sign of what is known as joint hypermobility syndrome (JMS) [3] or, more recently, hypermobility spectrum disorder (HSD). Hypermobile joints are a feature of genetic connective tissue disorders such as hypermobility spectrum disorder (HSD) or Ehlers–Danlos syndromes. Until new diagnostic criteria were introduced, hypermobility syndrome was sometimes considered identical to Ehlers–Danlos syndrome hypermobile type/EDS Type 3. As no genetic test can identify or separate either conditions and because of the similarity of the diagnostic criteria and recommended treatments, many experts recommend they should be recognized as the same condition until further research is carried out. [4] [5]

In 2016 the diagnostic criteria for EDS Type 3 were re-written to be more restrictive, with the intent of narrowing the pool of EDS Type 3 patients in the hope of making it easier to identify a common genetic mutation, EDS Type 3 being the only EDS variant without a diagnostic DNA test. At the same time hypermobility spectrum disorder was redefined as a hypermobility disorder that does not meet the diagnostic criteria for EDS Type 3 (or Marfans, OI, or other collagen disorders) and renamed as hypermobility spectrum disorder (HSD).

Signs and symptoms

People with Joint Hypermobility Syndrome may develop other conditions caused by their unstable joints. [3] [6] These conditions include:

Associated conditions

Those with hypermobile joints are more likely to have fibromyalgia, mitral valve prolapse, and anxiety disorders such as panic disorder. [2]


Hypermobility generally results from one or more of the following:

These abnormalities cause abnormal joint stress, meaning that the joints can wear out, leading to osteoarthritis.

The condition tends to run in families, suggesting a genetic basis for at least some forms of hypermobility. The term double jointed is often used to describe hypermobility; however, the name is a misnomer and should not be taken literally, as hypermobile joints are not doubled/extra in any sense.

Most people have hypermobility with no other symptoms. Approximately 5% of the healthy population have one or more hypermobile joints. However, people with "joint hypermobility syndrome" are subject to many difficulties. For example, their joints may be easily injured, be more prone to complete dislocation due to the weakly stabilized joint and they may develop problems from muscle fatigue (as muscles must work harder to compensate for weakness in the ligaments that support the joints). Hypermobility syndrome can lead to chronic pain or even disability in severe cases. Musical instrumentalists with hypermobile fingers may have difficulties when fingers collapse into the finger locking position. Or, conversely, they may display superior abilities due to their increased range of motion for fingering, such as in playing a violin or cello.

Hypermobility may be symptomatic of a serious medical condition, such as Stickler syndrome, Ehlers–Danlos syndrome, [8] Marfan syndrome, [8] Loeys–Dietz syndrome, rheumatoid arthritis, osteogenesis imperfecta, [8] lupus, polio, Down syndrome, [8] morquio syndrome, cleidocranial dysostosis or myotonia congenita.

Hypermobility has been associated with chronic fatigue syndrome and fibromyalgia. Hypermobility causes physical trauma (in the form of joint dislocations, joint subluxations, joint instability, sprains, etc.). These conditions often, in turn, cause physical and/or emotional trauma and are possible triggers for conditions such as fibromyalgia. [9]

Women with hypermobility may experience particular difficulties when pregnant. During pregnancy, the body releases certain hormones that alter ligament physiology, easing the stretching needed to accommodate fetal growth as well as the birthing process. The combination of hypermobility and pregnancy-related pelvic girdle during pregnancy can be debilitating. The pregnant woman with hypermobile joints will often be in significant pain as muscles and joints adapt to the pregnancy. Pain often inhibits such women from standing or walking during pregnancy. The pregnant patient may be forced to use a bedpan and/or a wheelchair during pregnancy and may experience permanent disability.

Symptoms of hypermobility include a dull but intense pain around the knee and ankle joints and the soles of the feet. The pain and discomfort affecting these body parts can be alleviated by using custom orthoses.


Hypermobile metacarpo-phalangeal joints Aa doublejointedfingers.jpg
Hypermobile metacarpo-phalangeal joints
Hyperextension thumb Hypertension Hypermobilitat.jpg
Hyperextension thumb

Hypermobility syndrome is generally considered to comprise hypermobility together with other symptoms, such as myalgia and arthralgia. It is relatively common among children and affects more females than males.

Current thinking suggests four causative factors:

Hypermobility can also be caused by connective tissue disorders, such as Ehlers–Danlos syndrome (EDS) and Marfan syndrome. Joint hypermobility is a common symptom for both. EDS has numerous sub-types; most include hypermobility in some degree. When hypermobility is the main symptom, then EDS/hypermobility type is likely. People with EDS-HT suffer frequent joint dislocations and subluxations (partial/incomplete dislocations), with or without trauma, sometimes spontaneously. Commonly, hypermobility is dismissed by medical professionals as nonsignificant. [12]

Ehlers–Danlos syndrome hypermobility type

Joint hypermobility is often correlated with hypermobile Ehlers–Danlos syndrome (hEDS, known also by EDS type III or Ehlers–Danlos syndrome hypermobility type (EDS-HT)). Ehlers–Danlos syndrome is a genetic disorder caused by mutations or hereditary genes, but the genetic defect that produced hEDS is largely unknown. In conjunction with joint hypermobility, a common symptom for hEDS is smooth, velvety, and stretchy skin; a symptom largely unique to the syndrome. When diagnosing hEDS, the Beighton Criteria are used, but are not always able to distinguish between generalized hypermobility and hEDS. [13]

Ehlers–Danlos hypermobility type can have severe musculoskeletal affects including:


Joint hypermobility syndrome shares symptoms with other conditions such as Marfan syndrome, Ehlers-Danlos Syndrome, and osteogenesis imperfecta. Experts in connective tissue disorders formally agreed that severe forms of Hypermobility Syndrome and mild forms of Ehlers-Danlos Syndrome Hypermobility Type are the same disorder. [ citation needed ]

Generalized hypermobility is a common feature in all these hereditary connective tissue disorders and many features overlap, but often features are present that enable differentiating these disorders. [14] The inheritance pattern of Ehlers-Danlos syndrome varies by type. The arthrochalasia, classic, hypermobility and vascular forms usually have an autosomal dominant pattern of inheritance. Autosomal dominant inheritance occurs when one copy of a gene in each cell is sufficient to cause a disorder. In some cases, an affected person inherits the mutation from one affected parent. Other cases result from new (sporadic) gene mutations. Such cases can occur in people with no history of the disorder in their family.

The dermatosparaxis and kyphoscoliosis types of EDS and some cases of the classic and hypermobility forms, are inherited in an autosomal recessive pattern. In autosomal recessive inheritance, two copies of the gene in each cell are altered. Most often, both parents of an individual with an autosomal recessive disorder are carriers of one copy of the altered gene but do not show signs and symptoms of the disorder.

Beighton criteria

Beighton score criteria: one point for each elbow and knee that hyperextends by 10 degrees or more (4 points), one for each little finger that bends back by 90 degrees (2 points), one for each thumb which can be touched to the forearm (2 points), and one for touching the floor with the palms. Ehlers-Danlos skala Beighton'a.png
Beighton score criteria: one point for each elbow and knee that hyperextends by 10 degrees or more (4 points), one for each little finger that bends back by 90 degrees (2 points), one for each thumb which can be touched to the forearm (2 points), and one for touching the floor with the palms.

As of July 2000, hypermobility was diagnosed using the Beighton criteria. In 2017, the criteria changed, but still involve the Beighton score. [16] The Beighton criteria do not replace the Beighton score but instead use the previous score in conjunction with other symptoms and criteria. HMS is diagnosed in the presence of either two major criteria, one major and two minor criteria, or four minor criteria. The criteria are:

Major criteria

  • A Beighton score of 5/9 or more (either current or historic)
  • Arthralgia for more than three months in four or more joints

this has been edited

Minor criteria

  • A Beighton score of 1, 2 or 3/9 (0, 1, 2 or 3 if aged 50+)
  • Arthralgia (> 3 months) in one to three joints or back pain (> 3 months), spondylosis, spondylolysis/spondylolisthesis.
  • Dislocation/subluxation in more than one joint, or in one joint on more than one occasion.
  • Soft tissue rheumatism. > 3 lesions (e.g. epicondylitis, tenosynovitis, bursitis).
  • Marfanoid habitus (tall, slim, span/height ratio >1.03, upper: lower segment ratio less than 0.89, arachnodactyly; positive Steinberg finger / Walker wrist signs).
  • Abnormal skin: striae, hyperextensibility, thin skin, papyraceous scarring.

Beighton score

The Beighton score is an edited version of the Carter/Wilkinson scoring system which was used for many years as an indicator of widespread hyper-mobility. Medical professionals varied in their interpretations of the results; some accepting as low as 1/9 and some 4/9 as a diagnosis of HMS. Therefore, it was incorporated, with clearer guidelines, into the Beighton Criteria. The Beighton score is measured by adding 1 point for each of the following:


Physical therapy

It is important that hypermobile individuals remain fit - even more so than the average individual - to prevent recurrent injuries. Regular exercise and exercise that is supervised by a physician and physical therapist can reduce symptoms because strong muscles increase dynamic joint stability. Low-impact exercise such as closed chain kinetic exercises are usually recommended as they are less likely to cause injury when compared to high-impact exercise or contact sports.

Heat and cold treatment can help temporarily to relieve the pain of aching joints and muscles but does not address the underlying problems.


Medication is not the primary treatment for hypermobility, but can be used as an adjunct treatment for related joint pain. NSAIDs are the primary medications of choice. Narcotics are not recommended for primary or long term treatment and are reserved for short term use after acute injury.

Lifestyle modification

For some people with hypermobility, lifestyle changes decrease symptom severity. In general, activity that increases pain is to be avoided. For example:

Other treatments


Hypermobile joints occur in about 10 to 25% of the population. [2]

See also

Related Research Articles

Marfan syndrome Genetic disorder involving connective tissue

Marfan syndrome (MFS) is a genetic disorder that affects the connective tissue. Those with the condition tend to be tall and thin, with long arms, legs, fingers, and toes. They also typically have overly-flexible joints and scoliosis. The most serious complications involve the heart and aorta, with an increased risk of mitral valve prolapse and aortic aneurysm. The lungs, eyes, bones, and the covering of the spinal cord are also commonly affected. The severity of the symptoms of MFS is variable.

A subluxation is an incomplete or partial dislocation of a joint or organ.

Myalgia is the medical term for muscle pain. Myalgia is a symptom of many diseases. The most common cause of acute myalgia is the overuse of a muscle or group of muscles; another likely cause is viral infection, especially when there has been no trauma. Long-lasting myalgia can be caused by metabolic myopathy, some nutritional deficiencies, and chronic fatigue syndrome.

Ehlers–Danlos syndromes Group of genetic connective tissues disorders

Ehlers–Danlos syndromes are a group of rare genetic connective-tissue disorders. Symptoms may include loose joints, joint pain, stretchy velvety skin, and abnormal scar formation. These can be noticed at birth or in early childhood. Complications may include aortic dissection, joint dislocations, scoliosis, chronic pain, or early osteoarthritis.

Joint dislocation Medical injury

A joint dislocation, also called luxation, occurs when there is an abnormal separation in the joint, where two or more bones meet. A partial dislocation is referred to as a subluxation. Dislocations are often caused by sudden trauma on the joint like an impact or fall. A joint dislocation can cause damage to the surrounding ligaments, tendons, muscles, and nerves. Dislocations can occur in any joint major or minor. The most common joint dislocation is a shoulder dislocation.

A connective tissue disease (collagenosis) is any disease that has the connective tissues of the body as a target of pathology. Connective tissue is any type of biological tissue with an extensive extracellular matrix that supports, binds together, and protects organs. These tissues form a framework, or matrix, for the body, and are composed of two major structural protein molecules: collagen and elastin. There are many different types of collagen protein in each of the body's tissues. Elastin has the capability of stretching and returning to its original length—like a spring or rubber band. Elastin is the major component of ligaments and skin. In patients with connective tissue disease, it is common for collagen and elastin to become injured by inflammation (ICT). Many connective tissue diseases feature abnormal immune system activity with inflammation in tissues as a result of an immune system that is directed against one's own body tissues (autoimmunity).

Ligamentous laxity Medical condition

Ligamentous laxity, or ligament laxity, means loose ligaments. Ligamentous laxity is a cause of chronic body pain characterized by loose ligaments. When this condition affects joints in the entire body, it is called generalized joint hypermobility, which occurs in about ten percent of the population, and may be genetic. Loose ligaments can appear in a variety of ways and levels of severity. It also does not always affect the entire body. One could have loose ligaments of the feet, but not of the arms.

Ectopia lentis Medical condition

Ectopia lentis is a displacement or malposition of the eye's crystalline lens from its normal location. A partial dislocation of a lens is termed lens subluxation or subluxated lens; a complete dislocation of a lens is termed lens luxation or luxated lens.

Hypermobility spectrum disorder (HSD), related to earlier diagnoses such as hypermobility syndrome (HMS), and joint hypermobility syndrome (JHS) is a heritable connective tissue disorder that affects joints and ligaments. Different forms and sub-types have been distinguished, but it does not include asymptomatic joint hypermobility, sometimes known as double-jointedness.

Larsen syndrome Medical condition

Larsen syndrome (LS) is a congenital disorder discovered in 1950 by Larsen and associates when they observed dislocation of the large joints and face anomalies in six of their patients. Patients with Larsen syndrome normally present with a variety of symptoms, including congenital anterior dislocation of the knees, dislocation of the hips and elbows, flattened facial appearance, prominent foreheads, and depressed nasal bridges. Larsen syndrome can also cause a variety of cardiovascular and orthopedic abnormalities. This rare disorder is caused by a genetic defect in the gene encoding filamin B, a cytoplasmic protein that is important in regulating the structure and activity of the cytoskeleton. The gene that influences the emergence of Larsen syndrome is found in chromosome region, 3p21.1-14.1, a region containing human type VII collagen gene. Larsen syndrome has recently been described as a mesenchyme disorder that affects the connective tissue of an individual. Autosomal dominant and recessive forms of the disorder have been reported, although most cases are autosomal dominant. Reports have found that in Western societies, Larsen syndrome can be found in one in every 100,000 births, but this is most likely an underestimate because the disorder is frequently unrecognized or misdiagnosed.

Superior tibiofibular joint

The proximal tibiofibular articulation is an arthrodial joint between the lateral condyle of the tibia and the head of the fibula.

Loeys–Dietz syndrome Medical condition

Loeys–Dietz syndrome (LDS) is an autosomal dominant genetic connective tissue disorder. It has features similar to Marfan syndrome and Ehlers–Danlos syndrome. The disorder is marked by aneurysms in the aorta, often in children, and the aorta may also undergo sudden dissection in the weakened layers of the wall of the aorta. Aneurysms and dissections also can occur in arteries other than the aorta. Because aneurysms in children tend to rupture early, children are at greater risk for dying if the syndrome is not identified. Surgery to repair aortic aneurysms is essential for treatment.

Sack–Barabas syndrome Medical condition

Sack–Barabas syndrome is an older name for the medical condition Ehlers-Danlos syndrome, vascular type. It affects the body's blood vessels and organs, making them prone to rupture.

MASS syndrome Medical condition

MASS syndrome is a medical disorder of the connective tissue similar to Marfan syndrome. MASS stands for: Mitral valve prolapse, Aortic root diameter at upper limits of normal for body size, Stretch marks of the skin, and Skeletal conditions similar to Marfan syndrome. It is caused by a mutation in the FBN1 gene, which encodes fibrillin-1. Fibrillin-1 is an extracellular matrix protein that is found in microfibrils; defects in the fibrillin-1 protein cause the malfunctioning of microfibrils, which results in improper stretching of ligaments, blood vessels, and skin.

Congenital contractural arachnodactyly (CCA), also known as Beals-Hecht syndrome, is a rare autosomal dominant congenital connective tissue disorder. As with Marfan syndrome, people with CCA typically have an arm span that is greater than their height and very long fingers and toes. However, Beals and Hecht discovered in 1972 that, unlike Marfan's, CCA is caused by mutations to the fibrillin-2 (FBN2) gene rather than the fibrillin-1 (FBN1) gene.

Marfanoid is a constellation of symptoms resembling those of Marfan syndrome, including long limbs, with an arm span that is at least 1.03 of the height of the individual, and a crowded oral maxilla, sometimes with a high arch in the palate, arachnodactyly, and hyperlaxity.

Genu recurvatum Orthopedic deformity

Genu recurvatum is a deformity in the knee joint, so that the knee bends backwards. In this deformity, excessive extension occurs in the tibiofemoral joint. Genu recurvatum is also called knee hyperextension and back knee. This deformity is more common in women and people with familial ligamentous laxity. Hyperextension of the knee may be mild, moderate or severe.

Daniel Browning Smith, also known as The Rubberboy, is an American contortionist, actor, television host, comedian, sports entertainer, and stuntman, who holds the title of the most flexible person in history, owning a total of seven Guinness World Records. Smith owes his flexibility to the genetic condition hypermobile Ehlers–Danlos syndrome.

Nevo syndrome Medical condition

Nevo Syndrome is a rare autosomal recessive disorder that usually begins during the later stages of pregnancy. Nevo Syndrome is caused by a NSD1 deletion, which encodes for methyltransferase involved with chromatin regulation. The exact mechanism as to how the chromatin is changed is unknown and still being studied. Nevo Syndrome is an example of one of about twelve overgrowth syndromes known today. Overgrowth syndromes are characterized with children experiencing a significant overgrowth during pregnancy and also excessive postnatal growth. Studies concerning Nevo Syndrome have shown a similar relation to Ehlers-Danlos syndrome, a connective tissue disorder. Nevo Syndrome is associated with kyphosis, an abnormal increased forward rounding of the spine, joint laxity, postpartum overgrowth, a highly arched palate, undescended testes in males, low-set ears, increased head circumference, among other symptoms.

Craniocervical instability is a medical condition where there is excessive movement of the vertebrae at the atlanto-occipital joint and the atlanto-axial joint, that is, between the skull and the top two vertebrae. This can cause neuronal injury and compression of nearby structures including the spinal cord, brain stem, vertebral artery or vagus nerve, causing a constellation of symptoms. It is frequently co-morbid with atlanto-axial instability, Chiari malformation and tethered cord syndrome.


  1. Federman CA, Dumesic DA, Boone WR, Shapiro SS (1990). "Relative efficiency of therapeutic donor insemination using a luteinizing hormone monitor". Fertil Steril. 54 (3): 489–92. doi:10.1016/S0015-0282(16)53767-4. PMID   2204553.
  2. 1 2 3 Garcia-Campayo, J; Asso, E; Alda, M (February 2011). "Joint hypermobility and anxiety: the state of the art". Current Psychiatry Reports. 13 (1): 18–25. doi:10.1007/s11920-010-0164-0. PMID   20963520. S2CID   24237928.
  3. 1 2 "Joint hypermobility - NHS Choices". NHS choices. Retrieved 2016-12-02.
  4. "Hypermobility Syndromes Association » JHS v EDS Hypermobility- Same Thing?". hypermobility.org. Archived from the original on 2016-11-25. Retrieved 2016-11-24.
  5. "Ehlers Danlos UK - JHS vs EDS". www.ehlers-danlos.org. Archived from the original on 2016-11-25. Retrieved 2016-11-24.
  6. "Clinician's Guide to JHS". hypermobility.org. Hypermobility Syndromes Association. Archived from the original on 2016-11-15. Retrieved 2016-12-02.
  7. "1.00 Musculoskeletal System-Adult". SSA.gov. Social Security Administration. 2013-05-31. Retrieved 2014-03-06.
  8. 1 2 3 4 Simpson, MR (September 2006). "Benign joint hypermobility syndrome: evaluation, diagnosis, and management". The Journal of the American Osteopathic Association. 106 (9): 531–536. PMID   17079522. Archived from the original on 2013-03-02.
  9. "Fibromyalgia: Possible Causes and Risk Factors". Webmd.com. 2008-05-21. Retrieved 2014-03-06.
  10. Keer, Rosemary; Rodney Grahame (2003). Hypermobility syndrome : recognition and management for physiotherapists. Edinburgh: Butterworth-Heinemann. p. 71. ISBN   978-0-7506-5390-9. Asian Indians were found by Wordsworth et al. (1987) to be significantly more mobile than English Caucasians.
  11. "Joint hypermobility". Arthritis Research UK. Archived from the original on 2009-04-08.
  12. Levy, Howard (2004). “The Ehlers Danlos Syndrome, Hypermobility Type.” Archived 2013-10-19 at the Wayback Machine University of Washington: NIH. Retrieved from
  13. T., Tinkle, Brad (2010). Joint hypermobility handbook : a guide for the issues & management of Ehlers-Danlos syndrome hypermobility type and the hypermobility syndrome. Greens Fork, IN: Left Paw Press. ISBN   9780982577158. OCLC   672037902.
  14. Zweers MC, Kucharekova M, Schalkwijk J (March 2005). "Tenascin-X: a candidate gene for benign joint hypermobility syndrome and hypermobility type Ehlers-Danlos syndrome?". Ann. Rheum. Dis. 64 (3): 504–5. doi:10.1136/ard.2004.026559. PMC   1755395 . PMID   15708907.
  15. File:Hiperlaxitud.jpg
  16. Grahame R. The revised (Beighton 1998) criteria for the diagnosis of benign joint hypermobility syndrome (BJHS). J Rheumatol. 2000;27:1777–1779
External resources