Spondylolisthesis

Last updated
Spondylolisthesis
Other namesOlisthesis
SpondylolisthesisL5S1.jpg
X-ray of the lateral lumbar spine with a grade III anterolisthesis at the L5-S1 level
Pronunciation
Specialty Orthopedics

Spondylolisthesis is the displacement of one spinal vertebra compared to another. While some medical dictionaries define spondylolisthesis specifically as the forward or anterior displacement of a vertebra over the vertebra inferior to it (or the sacrum), [1] [2] it is often defined in medical textbooks as displacement in any direction. [3] [4] Spondylolisthesis is graded based upon the degree of slippage of one vertebral body relative to the subsequent adjacent vertebral body. [5] Spondylolisthesis is classified as one of the six major etiologies: degenerative, traumatic, dysplastic, isthmic, pathologic, or post-surgical. [6] Spondylolisthesis most commonly occurs in the lumbar spine, primarily at the L5-S1 level, with the L5 vertebral body anteriorly translating over the S1 vertebral body. [6]

Contents

Types

Olisthesis (synonym olisthy) is a term that more explicitly denotes displacement in any direction. [7] Forward or anterior displacement can specifically be called anterolisthesis. [3] [4] Anterolisthesis commonly involves the fifth lumbar vertebra. [8] Backward displacement is called retrolisthesis. Lateral displacement is called lateral listhesis [3] or laterolisthesis. [4]

A hangman's fracture is a specific type of spondylolisthesis where the second cervical vertebra (C2) is displaced anteriorly relative to the C3 vertebra due to fractures of the C2 vertebra's pedicles.

Anterolisthesis

Classification

Anterolisthesis can be categorized by cause, location, and severity.

By causes

  • Degenerative anterolisthesis (a.k.a. type 3) is a disease of the older adult that develops as a result of facet arthritis and joint remodeling. Joint arthritis, and ligamentum flavum weakness, may result in slippage of a vertebra. Degenerative forms are more likely to occur in women, persons older than fifty, and African Americans. [9]
  • Traumatic anterolisthesis is rare and results from acute fractures in the neural arch, other than the pars. [10]
  • Dysplastic anterolisthesis (a.k.a. type 1) results from congenital abnormalities of the upper sacral facets or inferior facets of the fifth lumbar vertebra, and accounts for 14% to 21% of all anterolisthesis. [11]
  • Isthmic anterolisthesis (a.k.a. type 2) is caused by a defect in the pars interarticularis but it can also be seen with an elongated pars.[ citation needed ]
  • Pathologic anterolisthesis (a.k.a. type 5) is caused by either infection or a malignancy.
  • Post-surgical/iatrogenic anterolisthesis (a.k.a. type 6) is caused by complications after surgery.

By location

Anterolisthesis location includes which vertebrae are involved, and may also specify which parts of the vertebrae are affected.

Isthmic anterolisthesis is where there is a defect in the pars interarticularis. [12] It is the most common form of spondylolisthesis; also called spondylolytic spondylolisthesis, it occurs with a reported prevalence of 5–7 percent in the US population. A slip or fracture of the intravertebral joint is usually acquired between the ages of 6 and 16 years, but remains unnoticed until adulthood. Roughly 90 percent of these isthmic slips are low-grade (less than 50 percent slip) and 10 percent are high-grade (greater than 50 percent slip). [9] It is divided into three subtypes: [13]

    • A: pars fatigue fracture
    • B: pars elongation due to multiple healed stress effects
    • C: pars acute fracture

Severity

Classification by degree of the slippage, as measured as percentage of the width of the vertebral body: [14] Grade I spondylolisthesis accounts for approximately 75% of all cases. [6]

  • Grade I: 0–25%
  • Grade II: 25–50%
  • Grade III: 50–75%
  • Grade IV: 75–100%
  • Grade V: greater than 100%

Signs and symptoms

Symptoms of lumbar anterolisthesis include:

Other symptoms may include tingling and numbness. Coughing and sneezing can intensify the pain. An individual may also note a "slipping sensation" when moving into an upright position. Sitting and trying to stand up may be painful and difficult. [15] [16]

Physical Exam

The major components of the physical exam for spondylolisthesis consists of observation, palpation, and maneuvers. The most common finding is pain with lumbar extension. [17] The following physical involves specific assessment for spondylolisthesis. However, a general examination, most importantly neurological examination, must be done to rule out alternative causes for signs and symptoms. Neurological examination is often normal in patients with spondylolisthesis, but lumbosacral radiculopathy is commonly seen in patients with degenerate spondylolisthesis. [18]

Observation

The patient should be observed walking and standing. Most patients present with a normal gait. An abnormal gait is often the sign of a high grade case. [19] A patient with high grade spondylolisthesis may present with a posterior pelvic tilt, causing a loss in the normal contour of the buttocks. [19] An antalgic gait, rounded back and decreased hip extension can result from severe pain. [20] While standing, the patient should be observed from the front, back, and sides. Increased and decreased lumbar lordosis, inward curvature of the lower spine, has been seen. [17] [21]

Palpation

Detection of spondylolisthesis by palpation is most often done by palpating for the spinous process. [22] Each level of the lumbar spine should be palpated. Spinous process palpation by itself is not a definitive method for the detection of spondylolisthesis. [22]

Maneuvers

  • Spinal range of motion testing – Range of motion limitations may be seen.
  • Lumbar hyperextension – Extension often elicits pain. This can be assessed by having the patient hyperextend the lumbar spine, provide resistance against back extensions, or undergo repeated lumbar extensions.
  • Sport-specific motion – Patient can be asked to repeat aggravating movements that they experience during their activity. During the movement, ask patient to point to any places with focal pain.
  • Straight leg raise – Maneuver used to assess for hamstring tightness. The straight leg raise has been found to be positive in only 10% of patients with spondylolisthesis. [21]
  • Muscle strength exercises – Lower abdominal, gluteal, and lumbar extensors should be assessed for weakness. Weakness in these muscles can increase lordosis and contribute to sacroiliac instability. [23] Abdominal flexor strength can be assessed with the abdominal flexor endurance test. The test involves the patient lying supine while holding a 45 degree flexed trunk and 90 degree flexed knees for 30 seconds. Gluteal strength can be assessed with a single-leg squat. Lastly, lumbar extension can be assessed with a single-leg bridge.

Diagnostic Imaging

In adults with non-specific low back pain, strong evidence suggests medical imaging should not be done within the first six weeks. [24] It is also suggested to avoid advanced imaging, such as CT or MRI, for adults without neurological symptoms or "red flags" in the patient's history. [25] [26] General recommendations for initial low back pain treatment is remaining active, avoiding twisting and bending, avoiding activities that worsen pain, avoiding bed rest, and possibly initiating a trial of non-steroidal anti-inflammatory drugs after consulting a physician. [27] Children and adolescents with persistent low back pain may require earlier imaging and should be seen by physician. Once imaging is deemed necessary, a combination of plain radiography, computed tomography, and magnetic resonance imaging may be used. Images are most often taken of the lumbar spine due to spondylolisthesis most commonly involving the lumbar region. [6] Images of the thoracic spine can be taken if a patient's history and physical suggest thoracic involvement.

Plain Radiography (X-Ray)

Plain radiography is often the first step in medical imaging. [17] Anteroposterior (front-back) and lateral (side) images are used to allow the physician to view the spine at multiple angles. [17] Oblique view are no longer recommended. [28] [29] In evaluating for spondylolithesis, plain radiographs provide information on the positioning and structural integrity of the spine. Therefore, if further detail is needed, a physician may request advanced imaging.

Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging is the preferred advanced imaging technique for evaluation of spondylolisthesis. [30] Preference is due to effectiveness, lack of radiation exposure, and ability to evaluate for soft tissue abnormalities and spinal canal involvement. [30] [31] MRI is limited in its ability to evaluate fractures in great detail, compared to other advanced imaging modalities. [32]

Computed Tomography (CT)

Computed tomography can be helpful in evaluating bony vertebral abnormalities, such as fractures. [33] This can be helpful in determining if the fracture is a new, old, and/or progressing fracture. [33] CT use in spondylolisthesis evaluation is controversial due to high radiation exposure. [34]

Treatment

Spondylolisthesis patients without symptoms do not need to be treated. [35]

Conservative

Non-operative management, also referred to as conservative treatment, is the recommended treatment for spondylolisthesis in most cases with or without neurological symptoms. [36] Most patients with spondylolisthesis respond to conservative treatment. [35] Conservative treatment consists primarily of physical therapy, intermittent bracing, aerobic exercise, pharmacological intervention, and epidural steroid injections. The majority of patients with degenerative spondylolisthesis do not require surgical intervention. [37]

  • Physical therapy can evaluate and address postural and compensatory movement abnormalities. Physical therapy primarily includes spinal flexion and extension exercises with a focus on core stabilization and muscle strengthening. In particular, lumbar spondylolisthesis may benefit from core stabilization exercises focusing on lower abdominal, lumbar muscles, hamstrings, and hip flexors, which may temporarily or permanently improve symptoms and improve general function. [38]
  • Some patients may benefit from bracing in combination with physical therapy. Additionally, bracing was found to be beneficial when performed immediately following the onset of symptoms, in particular patients with lumbar pars interarticular defects. [38]
  • Exercises such as cycling, elliptical training, swimming, and walking are considered low-impact aerobic exercises and are recommended for pain relief. [39]
  • Anti-inflammatory medications (NSAIDS) in combination with paracetamol can be tried initially. If a severe radicular component is present, a short course of oral steroids such as prednisone or methylprednisolone can be considered. [39] Epidural steroid injections, either interlaminal or transforaminal, performed under fluoroscopic guidance can help with severe radicular (leg) pain, but lacks conclusive benefit in relieving back pain in lumbar spondylolisthesis. [40]

Surgical

There are no clear radiological or medical guidelines or indications for surgical interventions in degenerative spondylolisthesis. [41] A minimum of three months of conservative management should be completed prior to considering surgical intervention. [41] Three indications for potential surgical treatment are as follows: persistent or recurrent back pain or neurologic pain with a persistent reduction of quality of life despite a reasonable trial of conservative (non-operative) management, new or worsening bladder or bowel symptoms, or a new or worsening neurological deficit. [42]

Degenerative spondylolisthesis at L5 - S1.
(A) CT sagittal view of a low grade slip.
(B) Lateral radiograph pre-operative intervention.
(C) Surgically treated with L5 - S1 decompression, instrumented fusion and placement of an interbody graft between L5 and S1. CT and X-ray of spondylolisthesis, and post-operative.jpg
Degenerative spondylolisthesis at L5 - S1.
(A) CT sagittal view of a low grade slip.
(B) Lateral radiograph pre-operative intervention.
(C) Surgically treated with L5 – S1 decompression, instrumented fusion and placement of an interbody graft between L5 and S1.

Both minimally invasive and open surgical techniques are used to treat anterolisthesis. [43]

Retrolisthesis

Grade 1 retrolistheses of C3 on C4 and C4 on C5 RetrolistheseC35grade1.PNG
Grade 1 retrolistheses of C3 on C4 and C4 on C5

A retrolisthesis is a posterior displacement of one vertebral body with respect to the subjacent vertebra to a degree less than a luxation (dislocation). Retrolistheses are most easily diagnosed on lateral x-ray views of the spine. Views, where care has been taken to expose for a true lateral view without any rotation, offer the best diagnostic quality.

Retrolistheses are found most prominently in the cervical and lumbar region, but can also be seen in the thoracic area.

History

Spondylolisthesis was first described in 1782 by Belgian obstetrician Herbinaux. [44] He reported a bony prominence anterior to the sacrum that obstructed the vagina of a small number of patients. [45] The term spondylolisthesis was coined in 1854 from the Greek σπονδυλοςspondylos'vertebra' and ὀλίσθησηςolisthesis'slipping, sliding'. [46]

See also

Related Research Articles

<span class="mw-page-title-main">Back pain</span> Area of body discomfort

Back pain is pain felt in the back. It may be classified as neck pain (cervical), middle back pain (thoracic), lower back pain (lumbar) or coccydynia based on the segment affected. The lumbar area is the most common area affected. An episode of back pain may be acute, subacute or chronic depending on the duration. The pain may be characterized as a dull ache, shooting or piercing pain or a burning sensation. Discomfort can radiate to the arms and hands as well as the legs or feet, and may include numbness or weakness in the legs and arms.

<span class="mw-page-title-main">Lumbar vertebrae</span> Five vertebrae between the pelvis and the rib cage

The lumbar vertebrae are, in human anatomy, the five vertebrae between the rib cage and the pelvis. They are the largest segments of the vertebral column and are characterized by the absence of the foramen transversarium within the transverse process and by the absence of facets on the sides of the body. They are designated L1 to L5, starting at the top. The lumbar vertebrae help support the weight of the body, and permit movement.

<span class="mw-page-title-main">Kyphosis</span> Medical condition

Kyphosis is an abnormally excessive convex curvature of the spine as it occurs in the thoracic and sacral regions. Abnormal inward concave lordotic curving of the cervical and lumbar regions of the spine is called lordosis. It can result from degenerative disc disease; developmental abnormalities, most commonly Scheuermann's disease; Copenhagen disease, osteoporosis with compression fractures of the vertebra; multiple myeloma; or trauma. A normal thoracic spine extends from the 1st thoracic to the 12th thoracic vertebra and should have a slight kyphotic angle, ranging from 20° to 45°. When the "roundness" of the upper spine increases past 45° it is called kyphosis or "hyperkyphosis". Scheuermann's kyphosis is the most classic form of hyperkyphosis and is the result of wedged vertebrae that develop during adolescence. The cause is not currently known and the condition appears to be multifactorial and is seen more frequently in males than females.

<span class="mw-page-title-main">Discectomy</span> Surgical removal of an intervertebral disc

A discectomy is the surgical removal of abnormal disc material that presses on a nerve root or the spinal cord. The procedure involves removing a portion of an intervertebral disc, which causes pain, weakness or numbness by stressing the spinal cord or radiating nerves. The traditional open discectomy, or Love's technique, was published by Ross and Love in 1971. Advances have produced visualization improvements to traditional discectomy procedures, or endoscopic discectomy. In conjunction with the traditional discectomy or microdiscectomy, a laminotomy is often involved to permit access to the intervertebral disc. Laminotomy means a significant amount of typically normal bone is removed from the vertebra, allowing the surgeon to better see and access the area of disc herniation.

<span class="mw-page-title-main">Lumbar spinal stenosis</span> Medical condition of the spine

Lumbar spinal stenosis (LSS) is a medical condition in which the spinal canal narrows and compresses the nerves and blood vessels at the level of the lumbar vertebrae. Spinal stenosis may also affect the cervical or thoracic region, in which case it is known as cervical spinal stenosis or thoracic spinal stenosis. Lumbar spinal stenosis can cause pain in the low back or buttocks, abnormal sensations, and the absence of sensation (numbness) in the legs, thighs, feet, or buttocks, or loss of bladder and bowel control.

<span class="mw-page-title-main">Laminectomy</span> Surgical removal of a lamina

A laminectomy is a surgical procedure that removes a portion of a vertebra called the lamina, which is the roof of the spinal canal. It is a major spine operation with residual scar tissue and may result in postlaminectomy syndrome. Depending on the problem, more conservative treatments may be viable.

<span class="mw-page-title-main">Back injury</span> Damage or wear to bones, muscles or other tissues of the back

Back injuries result from damage, wear, or trauma to the bones, muscles, or other tissues of the back. Common back injuries include sprains and strains, herniated discs, and fractured vertebrae. The lumbar spine is often the site of back pain. The area is susceptible because of its flexibility and the amount of body weight it regularly bears. It is estimated that low-back pain may affect as much as 80 to 90 percent of the general population in the United States.

<span class="mw-page-title-main">Spondylosis</span> Degeneration of the vertebral column

Spondylosis is the degeneration of the vertebral column from any cause. In the more narrow sense it refers to spinal osteoarthritis, the age-related degeneration of the spinal column, which is the most common cause of spondylosis. The degenerative process in osteoarthritis chiefly affects the vertebral bodies, the neural foramina and the facet joints. If severe, it may cause pressure on the spinal cord or nerve roots with subsequent sensory or motor disturbances, such as pain, paresthesia, imbalance, and muscle weakness in the limbs.

<span class="mw-page-title-main">Lordosis</span> Medical condition

Lordosis is historically defined as an abnormal inward curvature of the lumbar spine. However, the terms lordosis and lordotic are also used to refer to the normal inward curvature of the lumbar and cervical regions of the human spine. Similarly, kyphosis historically refers to abnormal convex curvature of the spine. The normal outward (convex) curvature in the thoracic and sacral regions is also termed kyphosis or kyphotic. The term comes from the Greek lordōsis, from lordos.

<span class="mw-page-title-main">Degenerative disc disease</span> Medical condition

Degenerative disc disease (DDD) is a medical condition typically brought on by the normal aging process in which there are anatomic changes and possibly a loss of function of one or more intervertebral discs of the spine. DDD can take place with or without symptoms, but is typically identified once symptoms arise. The root cause is thought to be loss of soluble proteins within the fluid contained in the disc with resultant reduction of the oncotic pressure, which in turn causes loss of fluid volume. Normal downward forces cause the affected disc to lose height, and the distance between vertebrae is reduced. The anulus fibrosus, the tough outer layers of a disc, also weakens. This loss of height causes laxity of the longitudinal ligaments, which may allow anterior, posterior, or lateral shifting of the vertebral bodies, causing facet joint malalignment and arthritis; scoliosis; cervical hyperlordosis; thoracic hyperkyphosis; lumbar hyperlordosis; narrowing of the space available for the spinal tract within the vertebra ; or narrowing of the space through which a spinal nerve exits with resultant inflammation and impingement of a spinal nerve, causing a radiculopathy.

<span class="mw-page-title-main">Retrolisthesis</span> Posterior displacement (but not dislocation) of a vertebra relative to the one below it

A retrolisthesis is a posterior displacement of one vertebral body with respect to the subjacent vertebra to a degree less than a luxation (dislocation). Retrolistheses are most easily diagnosed on lateral x-ray views of the spine. Views where care has been taken to expose for a true lateral view without any rotation offer the best diagnostic quality.

<span class="mw-page-title-main">Cauda equina syndrome</span> Nerve damage at the end of the spinal cord

Cauda equina syndrome (CES) is a condition that occurs when the bundle of nerves below the end of the spinal cord known as the cauda equina is damaged. Signs and symptoms include low back pain, pain that radiates down the leg, numbness around the anus, and loss of bowel or bladder control. Onset may be rapid or gradual.

<span class="mw-page-title-main">Spinal fusion</span> Immobilization or ankylosis of two or more vertebrae by fusion of the vertebral bodies

Spinal fusion, also called spondylodesis or spondylosyndesis, is a neurosurgical or orthopedic surgical technique that joins two or more vertebrae. This procedure can be performed at any level in the spine and prevents any movement between the fused vertebrae. There are many types of spinal fusion and each technique involves using bone grafting—either from the patient (autograft), donor (allograft), or artificial bone substitutes—to help the bones heal together. Additional hardware is often used to hold the bones in place while the graft fuses the two vertebrae together. The placement of hardware can be guided by fluoroscopy, navigation systems, or robotics.

Congenital vertebral anomalies are a collection of malformations of the spine. Most, around 85%, are not clinically significant, but they can cause compression of the spinal cord by deforming the vertebral canal or causing instability. This condition occurs in the womb. Congenital vertebral anomalies include alterations of the shape and number of vertebrae.

<span class="mw-page-title-main">Spondylolysis</span> Defect or fracture in the pars interarticularis of the vertebral arch

Spondylolysis is a defect or stress fracture in the pars interarticularis of the vertebral arch. The vast majority of cases occur in the lower lumbar vertebrae (L5), but spondylolysis may also occur in the cervical vertebrae.

<span class="mw-page-title-main">Spinal disc herniation</span> Injury to the connective tissue between spinal vertebrae

A spinal disc herniation is an injury to the cushioning and connective tissue between vertebrae, usually caused by excessive strain or trauma to the spine. It may result in back pain, pain or sensation in different parts of the body, and physical disability. The most conclusive diagnostic tool for disc herniation is MRI, and treatment may range from painkillers to surgery. Protection from disc herniation is best provided by core strength and an awareness of body mechanics including posture.

<span class="mw-page-title-main">Facet joint</span> Joint between two adjacent vertebrae

The facet joints are a set of synovial, plane joints between the articular processes of two adjacent vertebrae. There are two facet joints in each spinal motion segment and each facet joint is innervated by the recurrent meningeal nerves.

<span class="mw-page-title-main">Vertebral compression fracture</span> Medical condition

A compression fracture is a collapse of a vertebra. It may be due to trauma or due to a weakening of the vertebra. This weakening is seen in patients with osteoporosis or osteogenesis imperfecta, lytic lesions from metastatic or primary tumors, or infection. In healthy patients, it is most often seen in individuals suffering extreme vertical shocks, such as ejecting from an ejection seat. Seen in lateral views in plain x-ray films, compression fractures of the spine characteristically appear as wedge deformities, with greater loss of height anteriorly than posteriorly and intact pedicles in the anteroposterior view.

<span class="mw-page-title-main">Laminotomy</span> Surgical procedure

A laminotomy is an orthopaedic neurosurgical procedure that removes part of the lamina of a vertebral arch in order to relieve pressure in the vertebral canal. A laminotomy is less invasive than conventional vertebral column surgery techniques, such as laminectomy because it leaves more ligaments and muscles attached to the spinous process intact and it requires removing less bone from the vertebra. As a result, laminotomies typically have a faster recovery time and result in fewer postoperative complications. Nevertheless, possible risks can occur during or after the procedure like infection, hematomas, and dural tears. Laminotomies are commonly performed as treatment for lumbar spinal stenosis and herniated disks. MRI and CT scans are often used pre- and post surgery to determine if the procedure was successful.

<span class="mw-page-title-main">Spinal stenosis</span> Disease of the bony spine that results in narrowing of the spinal canal

Spinal stenosis is an abnormal narrowing of the spinal canal or neural foramen that results in pressure on the spinal cord or nerve roots. Symptoms may include pain, numbness, or weakness in the arms or legs. Symptoms are typically gradual in onset and improve with leaning forward. Severe symptoms may include loss of bladder control, loss of bowel control, or sexual dysfunction.

References

  1. "spondylolisthesis". Merriam-Webster medical dictionary. Retrieved 2017-09-07.
  2. "spondylolisthesis". Farlex medical dictionary. Retrieved 2017-09-07., in turn citing:
    • Miller-Keane Encyclopedia and Dictionary of Medicine, Nursing, and Allied Health, Seventh Edition. Copyright date 2003
    • Dorland's Medical Dictionary for Health Consumers. Copyright date 2007
    • The American Heritage Medical Dictionary. Copyright date 2007
    • Mosby's Medical Dictionary, 9th edition
    • McGraw-Hill Concise Dictionary of Modern Medicine. Copyright date 2002
    • Collins Dictionary of Medicine. Copyright date 2005
  3. 1 2 3 Introduction to chapter 17 in: Thomas J. Errico, Baron S. Lonner, Andrew W. Moulton (2009). Surgical Management of Spinal Deformities. Elsevier Health Sciences. ISBN   9781416033721.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. 1 2 3 Page 250 in: Walter R. Frontera, Julie K. Silver, Thomas D. Rizzo (2014). Essentials of Physical Medicine and Rehabilitation (3 ed.). Elsevier Health Sciences. ISBN   9780323222723.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. Shamrock, Alan G.; Donnally III, Chester J.; Varacallo, Matthew (2019), "Lumbar Spondylolysis And Spondylolisthesis", StatPearls, StatPearls Publishing, PMID   28846329 , retrieved 2019-10-28
  6. 1 2 3 4 Tenny, Steven; Gillis, Christopher C. (2019), "Spondylolisthesis", StatPearls, StatPearls Publishing, PMID   28613518 , retrieved 2019-10-28
  7. Frank Gaillard. "Olisthesis". Radiopaedia . Retrieved 2018-02-21.
  8. Foreman P, Griessenauer CJ, Watanabe K, Conklin M, Shoja MM, Rozzelle CJ, Loukas M, Tubbs RS (2013). "L5 spondylolysis/spondylolisthesis: a comprehensive review with an anatomic focus". Child's Nervous System. 29 (2): 209–16. doi:10.1007/s00381-012-1942-2. PMID   23089935. S2CID   25145462.
  9. 1 2 "Adult Spondylolisthesis in the Low Back". American Academy of Orthopaedic Surgeons. Retrieved 9 June 2013.
  10. Syrmou E, Tsitsopoulos PP, Marinopoulos D, Tsonidis C, Anagnostopoulos I, Tsitsopoulos PD (2010). "Spondylolysis: a review and reappraisal". Hippokratia. 14 (1): 17–21. PMC   2843565 . PMID   20411054.
  11. Leone LD, Lamont DW (1999). "Diagnosis and treatment of severe dysplastic spondylolisthesis". The Journal of the American Osteopathic Association. 99 (6): 326–8. doi: 10.7556/jaoa.1999.99.6.326 . PMID   10405520.
  12. Aruna Ganju (2002). "Isthmic Spondylolisthesis". Neurosurg Focus. 13 (1).
  13. "Adult Isthmic Spondylolisthesis – Spine – Orthobullets".
  14. "Spondylolysis and Spondylolisthesis of the Lumbar Spine". Massachusetts General Hospital. Archived from the original on 2016-10-23. Retrieved 2016-12-14.
  15. "Adult Spondylolisthesis in the Low Back – OrthoInfo – AAOS".
  16. "Pain Management: Spondylolisthesis".
  17. 1 2 3 4 Tofte, Josef N.; CarlLee, Tyler L.; Holte, Andrew J.; Sitton, Sean E.; Weinstein, Stuart L. (2017-05-15). "Imaging Pediatric Spondylolysis: A Systematic Review". Spine. 42 (10): 777–782. doi:10.1097/BRS.0000000000001912. ISSN   1528-1159. PMID   27669047. S2CID   4399796.
  18. Bolesta, M. J.; Bohlman, H. H. (1989). "Degenerative spondylolisthesis". Instructional Course Lectures. 38: 157–165. ISSN   0065-6895. PMID   2649568.
  19. 1 2 Meyers, Laura L.; Dobson, Scott R.; Wiegand, Dave; Webb, Julie D.; Mencio, Gregory A. (September 1999). "Mechanical Instability as a Cause of Gait Disturbance in High-Grade Spondylolisthesis: A Pre-and Postoperative Three-Dimensional Gait Analysis". Journal of Pediatric Orthopaedics. 19 (5): 672–6. doi:10.1097/01241398-199909000-00024. ISSN   0271-6798. PMID   10488874.
  20. Al-Obaidi, Saud M.; Al-Zoabi, Baker; Al-Shuwaie, Nadia; Al-Zaabie, Najeeba; Nelson, Roger M. (June 2003). "The influence of pain and pain-related fear and disability beliefs on walking velocity in chronic low back pain". International Journal of Rehabilitation Research. 26 (2): 101–8. doi:10.1097/00004356-200306000-00004. ISSN   0342-5282. PMID   12799603. S2CID   37347323.
  21. 1 2 Kalpakcioglu, Banu; Altınbilek, Turgay; Senel, Kazım (2009-03-27). "Determination of spondylolisthesis in low back pain by clinical evaluation". Journal of Back and Musculoskeletal Rehabilitation. 22 (1): 27–32. doi:10.3233/BMR-2009-0212. PMID   20023361.
  22. 1 2 Collaer, Jeff W.; McKeough, D. Michael; Boissonnault, William G. (2006-01-01). "Lumbar Isthmic Spondylolisthesis Detection with Palpation: Interrater Reliability and Concurrent Criterion-Related Validity". Journal of Manual & Manipulative Therapy. 14 (1): 22–29. doi:10.1179/106698106790820917. ISSN   1066-9817. S2CID   71855530.
  23. Petty, Nicola J.; Moore, Ann P. (2011). Neuromusculoskeletal Examination and Assessment,A Handbook for Therapists with PAGEBURST Access,4: Neuromusculoskeletal Examination and Assessment. Elsevier Health Sciences. ISBN   9780702029905.
  24. "Imaging for Low Back Pain". www.aafp.org. Archived from the original on 2019-11-07. Retrieved 2019-11-07.
  25. Chou, Roger; Qaseem, Amir; Owens, Douglas K.; Shekelle, Paul; Clinical Guidelines Committee of the American College of Physicians (2011-02-01). "Diagnostic imaging for low back pain: advice for high-value health care from the American College of Physicians". Annals of Internal Medicine. 154 (3): 181–189. doi:10.7326/0003-4819-154-3-201102010-00008. ISSN   1539-3704. PMID   21282698. S2CID   1326352.
  26. Chou, Roger; Fu, Rongwei; Carrino, John A.; Deyo, Richard A. (2009-02-07). "Imaging strategies for low-back pain: systematic review and meta-analysis". Lancet. 373 (9662): 463–472. doi:10.1016/S0140-6736(09)60172-0. ISSN   1474-547X. PMID   19200918. S2CID   31602395.
  27. Casazza, Brian A. (2012-02-15). "Diagnosis and Treatment of Acute Low Back Pain". American Family Physician. 85 (4): 343–350. ISSN   0002-838X. PMID   22335313.
  28. Libson, E.; Bloom, R. A.; Dinari, G. (1982). "Symptomatic and asymptomatic spondylolysis and spondylolisthesis in young adults". International Orthopaedics. 6 (4): 259–261. doi:10.1007/bf00267148. ISSN   0341-2695. PMID   6222997. S2CID   1323431.
  29. Saifuddin, A.; White, J.; Tucker, S.; Taylor, B. A. (March 1998). "Orientation of lumbar pars defects: implications for radiological detection and surgical management". The Journal of Bone and Joint Surgery. British Volume. 80 (2): 208–211. doi: 10.1302/0301-620x.80b2.8219 . ISSN   0301-620X. PMID   9546445.
  30. 1 2 Thornhill, Beverly A.; Green, Debra J.; Schoenfeld, Alan H. (2015), Wollowick, Adam L.; Sarwahi, Vishal (eds.), "Imaging Techniques for the Diagnosis of Spondylolisthesis", Spondylolisthesis: Diagnosis, Non-Surgical Management, and Surgical Techniques, Springer US, pp. 59–94, doi:10.1007/978-1-4899-7575-1_6, ISBN   9781489975751
  31. Kobayashi, Atsushi; Kobayashi, Tsutomu; Kato, Kazuo; Higuchi, Hiroshi; Takagishi, Kenji (January 2013). "Diagnosis of radiographically occult lumbar spondylolysis in young athletes by magnetic resonance imaging". The American Journal of Sports Medicine. 41 (1): 169–176. doi:10.1177/0363546512464946. ISSN   1552-3365. PMID   23136176. S2CID   6080935.
  32. Maurer, Marvin; Soder, Ricardo Bernardi; Baldisserotto, Matteo (February 2011). "Spine abnormalities depicted by magnetic resonance imaging in adolescent rowers". The American Journal of Sports Medicine. 39 (2): 392–397. doi:10.1177/0363546510381365. ISSN   1552-3365. PMID   20889986. S2CID   27402258.
  33. 1 2 Morita, T.; Ikata, T.; Katoh, S.; Miyake, R. (July 1995). "Lumbar spondylolysis in children and adolescents". The Journal of Bone and Joint Surgery. British Volume. 77 (4): 620–625. doi: 10.1302/0301-620X.77B4.7615609 . ISSN   0301-620X. PMID   7615609.
  34. Leone, Antonio; Cianfoni, Alessandro; Cerase, Alfonso; Magarelli, Nicola; Bonomo, Lorenzo (2011-06-01). "Lumbar spondylolysis: a review". Skeletal Radiology. 40 (6): 683–700. doi:10.1007/s00256-010-0942-0. ISSN   1432-2161. PMID   20440613. S2CID   7348195.
  35. 1 2 Haun, Daniel W.; Kettner, Norman W. (2005). "Spondylolysis and spondylolisthesis: a narrative review of etiology, diagnosis, and conservative management". Journal of Chiropractic Medicine. 4 (4): 206–217. doi:10.1016/S0899-3467(07)60153-0. ISSN   1556-3707. PMC   2647050 . PMID   19674664.
  36. Vibert, Brady T.; Sliva, Christopher D.; Herkowitz, Harry N. (February 2006). "Treatment of instability and spondylolisthesis: surgical versus nonsurgical treatment". Clinical Orthopaedics and Related Research. 443: 222–227. doi:10.1097/01.blo.0000200233.99436.ea. ISSN   0009-921X. PMID   16462445.
  37. Evans, Nick; McCarthy, Michael (2018-12-19). "Management of symptomatic degenerative low-grade lumbar spondylolisthesis". EFORT Open Reviews. 3 (12): 620–631. doi:10.1302/2058-5241.3.180020. ISSN   2058-5241. PMC   6335606 . PMID   30697442.
  38. 1 2 Garet, Matthew; Reiman, Michael P.; Mathers, Jessie; Sylvain, Jonathan (May 2013). "Nonoperative treatment in lumbar spondylolysis and spondylolisthesis: a systematic review". Sports Health. 5 (3): 225–232. doi:10.1177/1941738113480936. ISSN   1941-7381. PMC   3658408 . PMID   24427393.
  39. 1 2 Kalichman, Leonid; Hunter, David J. (March 2008). "Diagnosis and conservative management of degenerative lumbar spondylolisthesis". European Spine Journal. 17 (3): 327–335. doi:10.1007/s00586-007-0543-3. ISSN   0940-6719. PMC   2270383 . PMID   18026865.
  40. Metzger, Robert; Chaney, Susan (2014). "Spondylolysis and spondylolisthesis: What the primary care provider should know". Journal of the American Association of Nurse Practitioners. 26 (1): 5–12. doi:10.1002/2327-6924.12083. ISSN   2327-6924. PMID   24170707. S2CID   25389798.
  41. 1 2 Steiger, F.; Becker, H.-J.; Standaert, C. J.; Balague, F.; Vader, J.-P.; Porchet, F.; Mannion, A. F. (May 2014). "Surgery in lumbar degenerative spondylolisthesis: indications, outcomes and complications. A systematic review". European Spine Journal. 23 (5): 945–973. doi:10.1007/s00586-013-3144-3. ISSN   1432-0932. PMID   24402446. S2CID   20342808.
  42. Sengupta, Dilip K.; Herkowitz, Harry N. (2005-03-15). "Degenerative spondylolisthesis: review of current trends and controversies". Spine. 30 (6 Suppl): S71–81. doi: 10.1097/01.brs.0000155579.88537.8e . ISSN   1528-1159. PMID   15767890. S2CID   41389199.
  43. Lu VM, Kerezoudis P, Gilder HE, McCutcheon BA, Phan K, Bydon M (2017). "Minimally Invasive Surgery Versus Open Surgery Spinal Fusion for Spondylolisthesis: A Systematic Review and Meta-analysis". Spine. 42 (3): E177–E185. doi:10.1097/BRS.0000000000001731. PMID   27285899. S2CID   714545.
  44. Newman PH (1955). "Spondylolisthesis, its cause and effect". Annals of the Royal College of Surgeons of England. 16 (5): 305–23. PMC   2377893 . PMID   14377314.
  45. Garrigues, Henry Jacques (1902). "Spondylolisthesic pelvis". A textbook of the science and art of obstetrics. pp. 490–93. OCLC   654149619.
  46. "Isthmic Spondylolisthesis and Spondylolysis".