Laudexium metilsulfate

Last updated
Laudexium metilsulfate
Laudexium metilsulfate.svg
Clinical data
Other namesLaudolissin
Routes of
administration
IV
Legal status
Legal status
  • discontinued from clinical use
Pharmacokinetic data
Bioavailability 100% (IV)
Identifiers
  • 1-[(3,4-Dimethoxyphenyl)methyl]-2-[10-[1-[(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxy-2-methyl-3,4-dihydro-1H-isoquinolin-2-ium-2-yl]decyl]-6,7-dimethoxy-2-methyl-3,4-dihydro-1H-isoquinolin-2-ium methyl sulfate
CAS Number
PubChem CID
ChemSpider
UNII
Chemical and physical data
Formula C54H80N2O16S2
Molar mass 1077.35 g·mol−1
3D model (JSmol)
  • C[N+]1(CCC2=CC(=C(C=C2C1CC3=CC(=C(C=C3)OC)OC)OC)OC)CCCCCCCCCC[N+]4(CCC5=CC(=C(C=C5C4CC6=CC(=C(C=C6)OC)OC)OC)OC)C.COS(=O)(=O)[O-].COS(=O)(=O)[O-]
  • InChI=1S/C52H74N2O8.2CH4O4S/c1-53(27-23-39-33-49(59-7)51(61-9)35-41(39)43(53)29-37-19-21-45(55-3)47(31-37)57-5)25-17-15-13-11-12-14-16-18-26-54(2)28-24-40-34-50(60-8)52(62-10)36-42(40)44(54)30-38-20-22-46(56-4)48(32-38)58-6;2*1-5-6(2,3)4/h19-22,31-36,43-44H,11-18,23-30H2,1-10H3;2*1H3,(H,2,3,4)/q+2;;/p-2 X mark.svgN
  • Key:LADQAYSLFLCKOD-UHFFFAOYSA-L X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Laudexium metilsulfate is a neuromuscular blocking drug or skeletal muscle relaxant in the category of non-depolarizing neuromuscular-blocking drugs, used adjunctively in surgical anesthesia to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation.

Laudexium [1] is no longer used in clinical practice, though it was introduced clinically in the early 1950s.[ citation needed ] It has about half the potency, a slower onset of action and a duration of action much longer than that of d-tubocurarine. [2] As with all clinically established (as well as experimental agents) with a non-depolarizing mechanism of action, its pharmacological action can be antagonized by anticholinesterases.

The displacement of laudexium from clinical use was assured owing to recurrent reports of significant post-operative re-curarization. [3]

Related Research Articles

<span class="mw-page-title-main">Suxamethonium chloride</span> Chemical compound

Suxamethonium chloride, also known as suxamethonium or succinylcholine, or simply sux by medical abbreviation, is a medication used to cause short-term paralysis as part of general anesthesia. This is done to help with tracheal intubation or electroconvulsive therapy. It is administered by injection, either into a vein or into a muscle. When used in a vein, onset of action is generally within one minute and effects last for up to 10 minutes.

<span class="mw-page-title-main">Pancuronium bromide</span> Aminosteroid muscle relaxant

Pancuronium is an aminosteroid muscle relaxant with various medical uses. It is used in euthanasia and is used in some states as the second of three drugs administered during lethal injections in the United States.

A muscle relaxant is a drug that affects skeletal muscle function and decreases the muscle tone. It may be used to alleviate symptoms such as muscle spasms, pain, and hyperreflexia. The term "muscle relaxant" is used to refer to two major therapeutic groups: neuromuscular blockers and spasmolytics. Neuromuscular blockers act by interfering with transmission at the neuromuscular end plate and have no central nervous system (CNS) activity. They are often used during surgical procedures and in intensive care and emergency medicine to cause temporary paralysis. Spasmolytics, also known as "centrally acting" muscle relaxant, are used to alleviate musculoskeletal pain and spasms and to reduce spasticity in a variety of neurological conditions. While both neuromuscular blockers and spasmolytics are often grouped together as muscle relaxant, the term is commonly used to refer to spasmolytics only.

Anticholinergics are substances that block the action of the neurotransmitter called acetylcholine (ACh) at synapses in the central and peripheral nervous system.

<span class="mw-page-title-main">Tubocurarine chloride</span> Obsolete muscle relaxant

Tubocurarine is a toxic alkaloid historically known for its use as an arrow poison. In the mid-1900s, it was used in conjunction with an anesthetic to provide skeletal muscle relaxation during surgery or mechanical ventilation. It is now rarely used as an adjunct for clinical anesthesia because safer alternatives, such as cisatracurium and rocuronium, are available.

<span class="mw-page-title-main">Neuromuscular-blocking drug</span> Type of paralyzing anesthetic including lepto- and pachycurares

Neuromuscular-blocking drugs block neuromuscular transmission at the neuromuscular junction, causing paralysis of the affected skeletal muscles. This is accomplished via their action on the post-synaptic acetylcholine (Nm) receptors.

<span class="mw-page-title-main">Rocuronium bromide</span> Chemical compound

Rocuronium bromide is an aminosteroid non-depolarizing neuromuscular blocker or muscle relaxant used in modern anaesthesia to facilitate tracheal intubation by providing skeletal muscle relaxation, most commonly required for surgery or mechanical ventilation. It is used for standard endotracheal intubation, as well as for rapid sequence induction (RSI).

<span class="mw-page-title-main">Atracurium besilate</span> Chemical compound

Atracurium besilate, also known as atracurium besylate, is a medication used in addition to other medications to provide skeletal muscle relaxation during surgery or mechanical ventilation. It can also be used to help with endotracheal intubation but suxamethonium (succinylcholine) is generally preferred if this needs to be done quickly. It is given by injection into a vein. Effects are greatest at about 4 minutes and last for up to an hour.

<span class="mw-page-title-main">Mivacurium chloride</span> Drug used in a hospital setting

Mivacurium chloride is a short-duration non-depolarizing neuromuscular-blocking drug or skeletal muscle relaxant in the category of non-depolarizing neuromuscular-blocking drugs, used adjunctively in anesthesia to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation.

<span class="mw-page-title-main">Doxacurium chloride</span> Pharmaceutical drug

Doxacurium chloride is a neuromuscular-blocking drug or skeletal muscle relaxant in the category of non-depolarizing neuromuscular-blocking drugs, used adjunctively in anesthesia to provide skeletal muscle relaxation during surgery or mechanical ventilation. Unlike a number of other related skeletal muscle relaxants, it is rarely used adjunctively to facilitate endotracheal intubation.

<span class="mw-page-title-main">Cisatracurium besilate</span> Chemical compound

Cisatracurium besilate is a bisbenzyltetrahydroisoquinolinium that has effect as a neuromuscular-blocking drug non-depolarizing neuromuscular-blocking drugs, used adjunctively in anesthesia to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation. It shows intermediate duration of action. Cisatracurium is one of the ten isomers of the parent molecule, atracurium. Moreover, cisatracurium represents approximately 15% of the atracurium mixture.

<span class="mw-page-title-main">Alcuronium chloride</span> Muscle relaxant

Alcuronium chloride is a neuromuscular blocking (NMB) agent, alternatively referred to as a skeletal muscle relaxant. It is a semi-synthetic substance prepared from C-toxiferine I, a bis-quaternary alkaloid obtained from Strychnos toxifera. C-toxiferine I itself has been tested for its pharmacological action and noted to be a very long acting neuromuscular blocking agent For a formal definition of the durations of actions associated with NMB agents, see page for gantacurium. The replacement of both the N-methyl groups with N-allyl moieties yielded N,N-diallyl-bis-nortoxiferine, now recognized as alcuronium.

<span class="mw-page-title-main">Butyrylcholinesterase</span> Mammalian protein found in humans

Butyrylcholinesterase, also known as BChE, BuChE, BuChase, pseudocholinesterase, or plasma (cholin)esterase, is a nonspecific cholinesterase enzyme that hydrolyses many different choline-based esters. In humans, it is made in the liver, found mainly in blood plasma, and encoded by the BCHE gene.

<span class="mw-page-title-main">Gantacurium chloride</span>

Gantacurium chloride is a new experimental neuromuscular blocking drug or skeletal muscle relaxant in the category of non-depolarizing neuromuscular-blocking drugs, used adjunctively in surgical anesthesia to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation. Gantacurium is not yet available for widespread clinical use: it is currently undergoing Phase III clinical development.

<span class="mw-page-title-main">Candocuronium iodide</span> Chemical compound

Candocuronium iodide is an aminosteroid neuromuscular-blocking drug. Its use in anesthesia for endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation was briefly evaluated in clinical studies in India. However, further development was discontinued due to attendant cardiovascular effects, primarily tachycardia that was about the same as the clinically established pancuronium bromide. Candocuronium demonstrated a short duration in the body, but a rapid onset of action. It had little to no ganglion blocking activity, with a greater potency than pancuronium.

<span class="mw-page-title-main">BW-A444</span> Chemical compound

BW A444U was an experimental neuromuscular blocking drug or skeletal muscle relaxant in the category of non-depolarizing neuromuscular-blocking drugs, intended to be used adjunctively in surgical anesthesia to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation. It was synthesized and developed in the early 1980s.

<span class="mw-page-title-main">Neuromuscular monitoring</span>

In anesthesia, neuromuscular blocking agents may be required to facilitate endotracheal intubation and provide optimal surgical conditions. When neuromuscular blocking agents are administered, neuromuscular function of the patient must be monitored. Neuromuscular function monitoring is a technique that involves the electrical stimulation of a motor nerve and monitoring the response of the muscle supplied by that nerve. It may be used from the induction of to recovery from neuromuscular blockade. Importantly, it is used to confirm adequacy of recovery after the administration of neuromuscular blocking agents. The response of the muscles to electrical stimulation of the nerves can be recorded subjectively (qualitative) or objectively (quantitatively). Quantitative techniques include electromyography, acceleromyography, kinemyography, phonomygraphy and mechanomyography. Neuromuscular monitoring is recommended when neuromuscular-blocking drugs have been part of the general anesthesia and the doctor wishes to avoid postoperative residual curarization (PORC) in the patient, that is, the residual paralysis of muscles stemming from these drugs.

<span class="mw-page-title-main">Postoperative residual curarization</span> Medical condition

Postoperative residual curarization (PORC) or residual neuromuscular blockade (RNMB) is a residual paresis after emergence from general anesthesia that may occur with the use of neuromuscular-blocking drugs. Today residual neuromuscular blockade is defined as a train of four ratio of less than 0.9 when measuring the response to ulnar nerve stimulation at the adductor pollicis muscle using mechanomyography or electromyography. A meta-analysis reported that the incidence of residual neuromuscular paralysis was 41% in patients receiving intermediate neuromuscular blocking agents during anaesthesia. It is possible that > 100,000 patients annually in the USA alone, are at risk of adverse events associated with undetected residual neuromuscular blockade. Neuromuscular function monitoring and the use of the appropriate dosage of sugammadex to reverse blockade produced by rocuronium can reduce the incidence of postoperative residual curarization. In this study, with usual care group receiving reversal with neostigmine resulted in a residual blockade rate of 43%.

Neuromuscular blocking agents, or in abbreviation, NMBAs, are chemical agents that paralyse skeletal muscles by blocking the movement of neurotransmitter at the neuromuscular junction. They are often used during general anesthesia to optimize intubating and surgical conditions, specifically to facilitate endotracheal intubation. This class of medications helps to reduce patient movement, breathing, or ventilator dyssynchrony and allows lower insufflation pressures during laparoscopy including the generation of nerve impulses. It has several indications for use in the intense care unit. It can help reduce hoarseness in voice as well as injury to the vocal cord during intubation. In addition, it plays an important role in facilitating mechanical ventilation in patients with poor lung function. In the following section, neuromuscular blocking agent's history, usages, mechanisms, side effects, interactions and pharmacology will further be elaborated and discussed.

<span class="mw-page-title-main">Cholinergic blocking drug</span> Drug that block acetylcholine in synapses of cholinergic nervous system

Cholinergic blocking drugs are a group of drugs that block the action of acetylcholine (ACh), a neurotransmitter, in synapses of the cholinergic nervous system. They block acetylcholine from binding to cholinergic receptors, namely the nicotinic and muscarinic receptors.

References

  1. Taylor EP (1952). "Synthetic neuromuscular blocking agents. Part II. Bis(quaternary ammonium salts) derived from laudanosine". J Chem Soc: 142–145. doi:10.1039/JR9520000142.
  2. Hunter AR (February 1955). "The action of laudexium in man and experimental animals" (PDF). British Journal of Anaesthesia. 27 (2): 73–9. doi:10.1093/bja/27.2.73. PMID   13230365.
  3. Collier HO, Macauley B (September 1952). "The pharmacological properties of "laudolissin" a long-acting curarizing agent". British Journal of Pharmacology and Chemotherapy. 7 (3): 398–408. doi:10.1111/j.1476-5381.1952.tb00707.x. PMC   1509112 . PMID   12978243.