2-Fluoromethcathinone

Last updated

2-Fluoromethcathinone
2-FMC structure.png
Clinical data
Other names2-FMC; 2-Fluoromethylcathinone; 2-Fluoro-N-methylcathinone; 2-Flephedrone
Drug class Stimulant; Norepinephrine–dopamine releasing agent
Identifiers
  • 1-(2-fluorophenyl)-2-(methylamino)propan-1-one
CAS Number
PubChem CID
ChemSpider
UNII
Chemical and physical data
Formula C10H12FNO
Molar mass 181.210 g·mol−1
3D model (JSmol)
  • CC(C(=O)C1=CC=CC=C1F)NC
  • InChI=1S/C10H12FNO/c1-7(12-2)10(13)8-5-3-4-6-9(8)11/h3-7,12H,1-2H3
  • Key:DCMOUMKIDLRIBO-UHFFFAOYSA-N

2-Fluoromethcathinone (2-FMC), also known as 2-flephedrone, is a psychostimulant and designer drug of the cathinone family. [1] [2] [3] [4] It acts as a dopamine and norepinephrine releasing agent (NDRA). [4]

Contents

Pharmacology

The drug has an EC50 Tooltip half-maximal effective concentration for dopamine release of 48.7 nM and induces 85% release of norepinephrine at a concentration of 10 μM. [4] For comparison, the EC50 values of methcathinone are 49.9 nM for dopamine release and 22.4 nM for norepinephrine release and it induces 100% release of norepinephrine at a concentration of 10 μM. [4] [5] Hence, compared to methcathinone, 2-FMC appears to be relatively more selective or efficacious for induction of dopamine release over norepinephrine release. [4] [5] It is notable in this regard that selective dopamine releasing agents are largely unknown. [6] [4]

See also

Related Research Articles

A dopamine reuptake inhibitor (DRI) is a class of drug which acts as a reuptake inhibitor of the monoamine neurotransmitter dopamine by blocking the action of the dopamine transporter (DAT). Reuptake inhibition is achieved when extracellular dopamine not absorbed by the postsynaptic neuron is blocked from re-entering the presynaptic neuron. This results in increased extracellular concentrations of dopamine and increase in dopaminergic neurotransmission.

<span class="mw-page-title-main">Dopamine transporter</span> Mammalian protein found in Homo sapiens

The dopamine transporter is a membrane-spanning protein coded for in humans by the SLC6A3 gene, that pumps the neurotransmitter dopamine out of the synaptic cleft back into cytosol. In the cytosol, other transporters sequester the dopamine into vesicles for storage and later release. Dopamine reuptake via DAT provides the primary mechanism through which dopamine is cleared from synapses, although there may be an exception in the prefrontal cortex, where evidence points to a possibly larger role of the norepinephrine transporter.

<span class="mw-page-title-main">Levmetamfetamine</span> Topical nasal decongestant

Levmetamfetamine, also known as l-desoxyephedrine or levomethamphetamine, and commonly sold under the brand name Vicks VapoInhaler among others, is an optical isomer of methamphetamine primarily used as a topical nasal decongestant. It is used to treat nasal congestion from allergies and the common cold. It was first used medically as decongestant beginning in 1958 and has been used for such purposes, primarily in the United States, since then.

<span class="mw-page-title-main">Chlorphentermine</span> Weight loss medication

Chlorphentermine, sold under the brand names Apsedon, Desopimon, and Lucofen, is a serotonergic appetite suppressant of the amphetamine family. Developed in 1962, it is the para-chloro derivative of the better-known appetite suppressant phentermine, which is still in current use.

<span class="mw-page-title-main">Propylamphetamine</span> Chemical compound

Propylamphetamine is a psychostimulant of the amphetamine family which was never marketed. It was first developed in the 1970s, mainly for research into the metabolism of, and as a comparison tool to, other amphetamines.

<span class="mw-page-title-main">Naphthylaminopropane</span> Chemical compound

Naphthylaminopropane, also known as naphthylisopropylamine (NIPA), is an experimental drug that was under investigation for the treatment of alcohol and stimulant addiction.

<span class="mw-page-title-main">Reuptake inhibitor</span> Type of drug

Reuptake inhibitors (RIs) are a type of reuptake modulators. It is a drug that inhibits the plasmalemmal transporter-mediated reuptake of a neurotransmitter from the synapse into the pre-synaptic neuron. This leads to an increase in extracellular concentrations of the neurotransmitter and an increase in neurotransmission. Various drugs exert their psychological and physiological effects through reuptake inhibition, including many antidepressants and psychostimulants.

<i>para</i>-Chloroamphetamine Chemical compound

para-Chloroamphetamine (PCA), also known as 4-chloroamphetamine (4-CA), is a serotonin–norepinephrine–dopamine releasing agent (SNDRA) and serotonergic neurotoxin of the amphetamine family. It is used in scientific research in the study of the serotonin system, as a serotonin releasing agent (SRA) at lower doses to produce serotonergic effects, and as a serotonergic neurotoxin at higher doses to produce long-lasting depletions of serotonin.

<span class="mw-page-title-main">Monoamine releasing agent</span> Class of compounds

A monoamine releasing agent (MRA), or simply monoamine releaser, is a drug that induces the release of one or more monoamine neurotransmitters from the presynaptic neuron into the synapse, leading to an increase in the extracellular concentrations of the neurotransmitters and hence enhanced signaling by those neurotransmitters. The monoamine neurotransmitters include serotonin, norepinephrine, and dopamine; monoamine releasing agents can induce the release of one or more of these neurotransmitters.

<span class="mw-page-title-main">Norepinephrine releasing agent</span> Catecholaminergic type of drug

A norepinephrine releasing agent (NRA), also known as an adrenergic releasing agent, is a catecholaminergic type of drug that induces the release of norepinephrine (noradrenaline) and epinephrine (adrenaline) from the pre-synaptic neuron into the synapse. This in turn leads to increased extracellular concentrations of norepinephrine and epinephrine therefore an increase in adrenergic neurotransmission.

<span class="mw-page-title-main">Dopamine releasing agent</span> Type of drug

A dopamine releasing agent (DRA) is a type of drug which induces the release of dopamine in the body and/or brain.

<span class="mw-page-title-main">Norepinephrine–dopamine releasing agent</span> Drug class

A norepinephrine–dopamine releasing agent (NDRA) is a type of drug which induces the release of norepinephrine and dopamine in the body and/or brain.

A serotonin–dopamine releasing agent (SDRA) is a type of drug which induces the release of serotonin and dopamine in the body and/or brain.

<span class="mw-page-title-main">Phenylpiperazine</span> Chemical compound

1-Phenylpiperazine is a simple chemical compound and drug featuring a phenyl group bound to a piperazine ring. The suffix ‘-piprazole’ is sometimes used in the names of drugs to indicate they belong to this class.

A monoamine reuptake inhibitor (MRI) is a drug that acts as a reuptake inhibitor of one or more of the three major monoamine neurotransmitters serotonin, norepinephrine, and dopamine by blocking the action of one or more of the respective monoamine transporters (MATs), which include the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT). This in turn results in an increase in the synaptic concentrations of one or more of these neurotransmitters and therefore an increase in monoaminergic neurotransmission.

<span class="mw-page-title-main">3-Chloromethcathinone</span> Stimulant designer drug

3-Chloromethcathinone (3-CMC), also known as clophedrone, is a synthetic substance belonging to the cathinone class of psychoactive compounds. It is very similar in structure to other methcathinone derivatives such as 3-MMC and 4-CMC. Unlike cathinone, which occurs naturally in the khat plant Catha edulis, 3-CMC is not found in nature and is solely produced through chemical synthesis.

<span class="mw-page-title-main">Substituted β-hydroxyamphetamine</span> Class of compounds based upon the β-hydroxyamphetamine structure

Substituted β-hydroxyamphetamines, or simply β-hydroxyamphetamines, also known as phenylisopropanolamines, phenylpropanolamines, norephedrines, or cathinols, are derivatives of β-hydroxyamphetamine with one or more chemical substituents. They are substituted phenethylamines, phenylethanolamines (β-hydroxyphenethylamines), and amphetamines (α-methylphenethylamines), and are closely related to but distinct from the substituted cathinones (β-ketoamphetamines). Examples of β-hydroxyamphetamines include the β-hydroxyamphetamine stereoisomers phenylpropanolamine and cathine and the stereospecific N-methylated β-hydroxyamphetamine derivatives ephedrine and pseudoephedrine, among many others.

<span class="mw-page-title-main">3-Methoxymethcathinone</span> Designer drug

3-Methoxymethcathinone (3-MeOMC), also known as meta-methoxymethcathinone (m-MeOMC), is a designer drug of the substituted cathinone family described as a stimulant.

<span class="mw-page-title-main">2-Aminoacetophenone</span> Phenethylamine derivative

Phenacylamine, also known as β-ketophenethylamine, α-desmethylcathinone, or 2-aminoacetophenone, is a substituted phenethylamine derivative. It is the phenethylamine homologue of cathinone (β-ketoamphetamine) and hence is a parent compound of a large number of stimulant and entactogen drugs.

<span class="mw-page-title-main">BK-NM-AMT</span> Monoamine releaser and entactogen

BK-NM-AMT, or βk-NM-αMT, also known as β-keto-N-methyl-αMT or as α,N-dimethyl-β-ketotryptamine, is a serotonin–dopamine releasing agent (SDRA) and putative entactogen of the tryptamine and α-alkyltryptamine families. Along with certain other tryptamines, such as α-ethyltryptamine (αET), 5-chloro-αMT and 5-fluoro-αET, it is one of the few SDRAs known.

References

  1. Kelly JP (2011). "Cathinone derivatives: a review of their chemistry, pharmacology and toxicology". Drug Test Anal. 3 (7–8): 439–453. doi:10.1002/dta.313. PMID   21755607.
  2. Glennon RA (2014). "Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention". Emerging Targets & Therapeutics in the Treatment of Psychostimulant Abuse. Adv Pharmacol. Vol. 69. pp. 581–620. doi:10.1016/B978-0-12-420118-7.00015-9. ISBN   978-0-12-420118-7. PMC   4471862 . PMID   24484988.
  3. Kelleher C, Christie R, Lalor K, Fox J, Bowden M, O'Donnell C (30 June 2011). "An Overview of New Psychoactive Substances and the Outlets Supplying them". Reports. doi:10.21427/43F1-XR91 . Retrieved 24 November 2024.
  4. 1 2 3 4 5 6 Blough BE, Decker AM, Landavazo A, Namjoshi OA, Partilla JS, Baumann MH, et al. (March 2019). "The dopamine, serotonin and norepinephrine releasing activities of a series of methcathinone analogs in male rat brain synaptosomes". Psychopharmacology (Berl). 236 (3): 915–924. doi:10.1007/s00213-018-5063-9. PMC   6475490 . PMID   30341459.
  5. 1 2 Blough B (July 2008). "Dopamine-releasing agents" (PDF). In Trudell ML, Izenwasser S (eds.). Dopamine Transporters: Chemistry, Biology and Pharmacology. Hoboken [NJ]: Wiley. pp. 305–320. ISBN   978-0-470-11790-3. OCLC   181862653. OL   18589888W.
  6. Negus SS, Mello NK, Blough BE, Baumann MH, Rothman RB (February 2007). "Monoamine releasers with varying selectivity for dopamine/norepinephrine versus serotonin release as candidate "agonist" medications for cocaine dependence: studies in assays of cocaine discrimination and cocaine self-administration in rhesus monkeys". J Pharmacol Exp Ther. 320 (2): 627–636. doi:10.1124/jpet.106.107383. PMID   17071819.