Clinical data | |
---|---|
Other names | 3-MeOMC; meta-Methoxymethcathinone; m-MeOMC; 3-Methoxy-N-methylcathinone; 3-Methoxy-N-methyl-β-ketoamphetamine; 3-Methoxy-α,N-dimethyl-β-ketophenethylamine |
Drug class | Serotonin–dopamine releasing agent; Stimulant [1] [2] |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
ChemSpider | |
UNII | |
Chemical and physical data | |
Formula | C11H15NO2 |
Molar mass | 193.246 g·mol−1 |
3D model (JSmol) | |
| |
|
3-Methoxymethcathinone (3-MeOMC), also known as meta-methoxymethcathinone (m-MeOMC), is a designer drug of the substituted cathinone family described as a stimulant. [3] [2] [1]
Similarly to other cathinones, it acts as a monoamine releasing agent, including of serotonin, dopamine, and norepinephrine. [1] However, in contrast to cathinones and amphetamines, 3-MeOMC appears to show selectivity for induction of serotonin and dopamine release over release of norepinephrine, and hence may act as a partially selective serotonin–dopamine releasing agent (SDRA). [1] Its EC50 values are 129 nM for dopamine release and 306 nM for serotonin release in vitro , whereas it only induced 68% release of norepinephrine at a concentration of 10 μM. [1] For comparison, other related cathinones, including cathinone, methcathinone, 3-methylmethcathinone (3-MMC; metaphedrone), 4-methylmethcathinone (4-MMC; mephedrone), and 4-methoxymethcathinone (4-MeOMC; methedrone), induced 94 to 101% release of norepinephrine at 10 μM. [1]
3-MeOMC first appeared as an illicit drug after 2014. [3]
Methcathinone is a monoamine alkaloid and psychoactive stimulant, a substituted cathinone. It is used as a recreational drug due to its potent stimulant and euphoric effects and is considered to be addictive, with both physical and psychological withdrawal occurring if its use is discontinued after prolonged or high-dosage administration. It is usually snorted, but can be smoked, injected, or taken orally.
A dopamine reuptake inhibitor (DRI) is a class of drug which acts as a reuptake inhibitor of the monoamine neurotransmitter dopamine by blocking the action of the dopamine transporter (DAT). Reuptake inhibition is achieved when extracellular dopamine not absorbed by the postsynaptic neuron is blocked from re-entering the presynaptic neuron. This results in increased extracellular concentrations of dopamine and increase in dopaminergic neurotransmission.
α-Ethyltryptamine, also known as etryptamine, is an entactogen and stimulant drug of the tryptamine family. It was originally developed and marketed as an antidepressant under the brand name Monase by Upjohn in the 1960s before being withdrawn due to toxicity.
Butylone, also known as β-keto-N-methylbenzodioxolylbutanamine (βk-MBDB), is an entactogen, psychedelic, and stimulant psychoactive drug of the phenethylamine chemical class. It is the β-keto analogue of MBDB and the substituted methylenedioxyphenethylamine analogue of buphedrone.
Methylone, also known as 3,4-methylenedioxy-N-methylcathinone (MDMC), is an empathogen and stimulant psychoactive drug. It is a member of the amphetamine, cathinone and methylenedioxyphenethylamine classes.
(–)-Benzofuranylpropylaminopentane is an experimental drug related to selegiline which acts as a monoaminergic activity enhancer (MAE). It is orally active in animals.
Methedrone is a recreational drug of the cathinone chemical class. Chemically, methedrone is closely related to para-methoxymethamphetamine (PMMA), methylone and mephedrone. Methedrone received media attention in 2009 after the death of two young Swedish men. In both cases toxicology analysis showed methedrone was the only drug present in both men during the time of their overdose and subsequent deaths.
MDAI, also known as 5,6-methylenedioxy-2-aminoindane, is an entactogen drug of the 2-aminoindane group which is related to MDMA and produces similar subjective effects.
A monoamine releasing agent (MRA), or simply monoamine releaser, is a drug that induces the release of a monoamine neurotransmitter from the presynaptic neuron into the synapse, leading to an increase in the extracellular concentrations of the neurotransmitter. Many drugs induce their effects in the body and/or brain via the release of monoamine neurotransmitters, e.g., trace amines, many substituted amphetamines, and related compounds.
A norepinephrine releasing agent (NRA), also known as an adrenergic releasing agent, is a catecholaminergic type of drug that induces the release of norepinephrine (noradrenaline) and epinephrine (adrenaline) from the pre-synaptic neuron into the synapse. This in turn leads to increased extracellular concentrations of norepinephrine and epinephrine therefore an increase in adrenergic neurotransmission.
A dopamine releasing agent (DRA) is a type of drug which induces the release of dopamine in the body and/or brain.
A serotonin–dopamine releasing agent (SDRA) is a type of drug which induces the release of serotonin and dopamine in the body and/or brain.
A monoamine reuptake inhibitor (MRI) is a drug that acts as a reuptake inhibitor of one or more of the three major monoamine neurotransmitters serotonin, norepinephrine, and dopamine by blocking the action of one or more of the respective monoamine transporters (MATs), which include the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT). This in turn results in an increase in the synaptic concentrations of one or more of these neurotransmitters and therefore an increase in monoaminergic neurotransmission.
3-Methylmethcathinone (3-MMC), also known as metaphedrone, is a designer drug from the substituted cathinone family. 3-MMC is a monoamine transporter substrate that potently releases and inhibits the reuptake of dopamine and norepinephrine, as well as displaying moderate serotonin releasing activity. Unlike some synthetic cathinones, 3-MMC has been evaluated in at least one large mammal study.
5-Chloro-α-methyltryptamine (5-Chloro-αMT), also known as PAL-542, is a tryptamine derivative related to α-methyltryptamine (αMT) and one of only a few known specific serotonin-dopamine releasing agents (SDRAs). It has been investigated in animals as a potential treatment for cocaine dependence. The EC50 values of 5-chloro-αMT in evoking the in vitro release of serotonin (5-HT), dopamine (DA), and norepinephrine (NE) in rat synaptosomes were reported as 16 nM, 54 nM, and 3434 nM, with an NE/DA ratio of 63.6 and a DA/5-HT ratio of 3.38, indicating that it is a highly specific and well-balanced SDRA. However, 5-chloro-αMT has also been found to act as a potent full agonist of the 5-HT2A receptor, with an EC50 value of 6.27 nM and an efficacy of 105%. It is likely to act as a potent agonist of other serotonin receptors as well.
NM-2-AI, also known as N-methyl-2-aminoindane, is a drug of the 2-aminoindane group that has been sold online as a designer drug. It is a rigid analogue of methamphetamine. NM-2-AI acts as a selective norepinephrine releasing agent, but also has affinity for several monoamine receptors.
4-Chloromethcathinone is a stimulant drug of the cathinone class that has been sold online as a designer drug.
Mexedrone is a stimulant and an entactogen drug of the cathinone class that has been sold online as a designer drug. It is the alpha-methoxy derivative of Mephedrone.
3-Chloromethcathinone (3-CMC), also known as clophedrone, is a synthetic substance belonging to the cathinone class of psychoactive compounds. It is very similar in structure to other methcathinone derivatives such as 3-MMC and 4-CMC., Unlike cathinone, which occurs naturally in the khat plant Catha edulis, 3-CMC is not found in nature and is solely produced through chemical synthesis.,
Monoaminergic activity enhancers (MAE), also known as catecholaminergic/serotonergic activity enhancers (CAE/SAE), are a class of drugs that enhance the action potential-evoked release of monoamine neurotransmitters in the nervous system. MAEs are distinct from monoamine releasing agents (MRAs) like amphetamine and fenfluramine in that they do not induce the release of monoamines from synaptic vesicles but rather potentiate only nerve impulse propagation-mediated monoamine release. That is, MAEs increase the amounts of monoamine neurotransmitters released by neurons per electrical impulse.