Nuclear power in the European Union

Last updated

Nuclear power in the European Union accounted for approximately 26% of total electricity production in 2019 [1] and nearly half of low-carbon energy production across the EU. [2]

Contents

The energy policies of the European Union (EU) member countries vary significantly. As of February 2020, 13 out of 27 countries have nuclear reactors. The countries with reactors are: Belgium, Bulgaria, Czech Republic, Finland, France, Germany, Hungary, Netherlands, Romania, Slovakia, Slovenia, Spain and Sweden. [3] The United Kingdom (a former member of the European Union with interconnected electricity links with the EU) also operates nuclear reactors.

As of November 2021, 5 member countries jointly urged the European Commission to keep nuclear power out of the EU's green finance taxonomy; namely the countries are Germany, Austria, Portugal, Denmark, Luxembourg. [4] [5] [6] As they collectively comprise less than 19% of the member states & less than 25% of the overall European Union population, they would be unable to block the European Commission's recommendations to include both natural gas and nuclear power within the EU's green finance taxonomy. [6]

Stress tests

Stress tests were developed within the EU in the aftermath of the Fukushima nuclear disaster, with the goal of making all 132 operating European reactors follow the same safety standards and have the same safety level for a list of possible catastrophical events (e.g. earthquake, flooding or plane crash). Most reactors proved well during the tests, with just 4 reactors in 2 countries having less than one hour for reactivating safety systems; however, most reactors will also have to undergo a program of safety upgrades. [7] In 2012, the costs of additional safety improvements were estimated to be in the range of €30 million to €200 million per reactor unit. Thus, the total costs for the 132 reactors operating in the EU could be in the order of €10–25 billion for all NPP units in the EU over the coming years. [7] :8

Energy mix

The EU-27 in 2005 satisfied its primary energy consumption with 36.7% oil, 24.6% gas, 17.7% coal, 14.2% nuclear, 6.7% renewables and 0.1% industrial waste. [8] [9] In 2006, nuclear energy provided the largest source (29.5%) of electricity with a production of 990 TWh, and an installed capacity of 134  GWe (17.6% of all installed capacity).

It was the leading electric power source in Belgium, France, Hungary, Lithuania and Slovakia. France, where nuclear is also the largest primary energy source, produced 450  TWh in 2006 – 45% of the EU's total. Denmark, Estonia, Ireland, Greece, Italy, Cyprus, Latvia, Luxembourg, Malta, Austria, Poland and Portugal did not produce any nuclear energy. [10]

As of June 2013 there were 131 nuclear reactors in the European Union. 112 units of these are located in eight of the western EU countries. [11] Total nuclear energy generation from EU power plants increased by 25% from 1995 to 2005. The majority of this growth occurred in the 1990s. Installed capacities decreased by 2.6% since 1990 and relative contribution to the overall electricity mix decreased from 30.8% in 1990 to 30.2% in 2005. [12]

In 2019 there were 106 operational reactors and production decreased by 16%, primarily due to the shutdown of a number of reactors in Germany.

As of 2019, nuclear power contributed over half of European Union's low-carbon power. [2]

Nuclear power in France usually provides up to 70% of electricity production. Corrosion in several French nuclear reactors, even the most modern type N4, led to long term shutdowns since October 2021. As of early September 2022, 32 of France's 56 nuclear reactors were shut down due to maintenance or technical problems. [13] [14] In 2022, Europe's driest summer in 500 years had serious consequences for power plant cooling systems, as the drought reduced the amount of river water available for cooling. [15] [16] On 6 July 2022, Paris announced that it will nationalise the Électricité de France (EDF) power utility as a result of the escalating energy crisis on the European continent. [17]

Uranium resources

A small amount of uranium mining is conducted in the European Union, however the majority of uranium is imported into the EU. Denmark, through Greenland, contains the majority of uranium deposits of any EU country but in 2021 most uranium mining was banned by Greenland's parliament due to environmental concerns. [18] In a sign of increasing politicisation of uranium mining, Spain proposed a ban in 2020. [19] Since 2001, France no longer has any uranium mines in operation, although continued to own a monopoly on uranium mines in Niger. [20]

The Euratom Supply Agency aims to ensure access to nuclear energy materials for all countries within the European Atomic Energy Community. [21]

EU-level policy

European nuclear policy is governed by the Euratom Treaty. Therefore, regular EU policy on for example environment or the market does not apply to issues in the nuclear field. Nuclear policy is mainly in the competence of the member states. In the EU level, DG ENER is the main authority for EU nuclear issues.

The European Council is the locus for intergovernmental decisions. The European Parliament does not have authority in the field of nuclear policy other than the right to ask questions to the European Commission.

In case of a radiological emergency, the EU will trigger its ECURIE alert system, which immediately notifies all national authorities of an impending nuclear hazard. This system was installed after the experience with the Chernobyl disaster.

The commission's SET plan mentions the "sustainable nuclear fission initiative" to develop Generation IV reactors as one of the research priorities of the European Union.

The European Commission is proposing a stress test for all nuclear power plants in Europe, to prove the nuclear fleet can withstand incidents like those in Fukushima. [22] The European Commission is also proposing tests for countries near the EU that make use of nuclear power.

Nuclear waste

Anti-nuclear protest near nuclear waste disposal centre at Gorleben in northern Germany Grune protests against nuclear energy.jpg
Anti-nuclear protest near nuclear waste disposal centre at Gorleben in northern Germany

On average, the EU creates about 40,000 cubic meters of radioactive waste per year. Eighty percent of that is short-lived low-level radioactive waste. [23] France is currently the only EU country that reprocess waste. The reprocessing is expected to continue in France. The countries that currently use this reprocessed fuel (MOX) include Germany, Belgium, France and Switzerland. [24] Reprocessing spent fuel significantly decreases its volume and extracts plutonium from it. Although plutonium is commonly associated with nuclear weapons, the plutonium extracted with reprocessing is not suitable for 'classic' nuclear weapons. [25]

The EBRD is financing the decommissioning of old nuclear plants in Bulgaria, Lithuania and Slovakia. [26]

EU member states Austria, Ireland, Netherlands, Poland, Slovakia, Bulgaria, Italy, Lithuania, Romania, and Slovenia are working since January 2009 together in the European Repository Development Organisation (ERDO) to address common issues on nuclear waste storage. [27]

ERDO was working early 2010 on a plan to store European nuclear waste somewhere in eastern Europe. [28]

"Some 7,000 cubic meters of high-level nuclear waste are produced across the EU each year. Most Member States store spent fuel and other highly radioactive wastes in above-ground storage facilities that need continuous maintenance and oversight and are at risk of accidents, such as airplane crashes, fires or earthquakes. Hungary and Bulgaria currently ship nuclear waste to Russia." [29]

On 19 July 2011, the European Commission adopted a Directive for regulating and handling nuclear waste in the EU. [30] "Exports to countries outside the EU is allowed under very strict and binding conditions: The third country needs to have a final repository in operation, when the waste is being shipped. Such a repository for highly radioactive waste is internationally defined to be a deep geological repository. At present, such deep geological repositories do not exist anywhere in the world nor is a repository in construction outside of the EU. It takes currently a minimum of 40 years to develop and build one." [30]

The MAX project (2011 to August 2014), funded partly with an almost €3 million European Commission contribution, [31] embodied working on transmuting the waste into less toxic shorter-lived elements. [32] The final report from August 2014 is available. [33] It concludes that one milestone was not achieved.

Nuclear decommissioning

By 2025, it is estimated that over a third of the EU's currently operational reactors will be at the end of their lifecycle and in need of shutdown. At the time of the accession to the EU, Bulgaria, Lithuania and Slovakia agreed to shut down reactors at the sites of Kozloduy, Ignalina and Bohunice respectively: these programs are currently under way. [34] Other decommissioning activities are under way for older reactors, phased out for political reasons (e.g. Italy, Germany) or simply because they reached their end-of-life (e.g. United Kingdom). [35]

In 2016, Reuters reported that the European Commission estimated that the EU's nuclear decommissioning liabilities were seriously underfunded by about 118 billion euros, with only 150 billion euros of earmarked assets to cover 268 billion euros of expected decommissioning costs covering both dismantling of nuclear plants and storage of radioactive parts and waste. Among EU member states still operating nuclear plants, only Britain's operators have enough dedicated assets to cover the expected costs, 63 billion euros, the commission's draft working paper finds. France had the largest shortfall with only 23 billion euros of earmarked assets to cover 74 billion euros of expected costs, while a stress test carried out by Germany's Economy Ministry late last year showed the provisions made by the country's utilities – E.ON, RWE, EnBW and Vattenfall [VATN.UL] – were adequate. Decommissioning costs vary according to reactor type and size, location, the proximity and availability of disposal facilities, the intended future use of the site and the condition of the reactor at the time of decommissioning. Although decommissioning might gradually become cheaper, the cost of final waste depositories is largely unknown and costs could also grow, rather than shrink, over the many decades in question. The European Commission declined to comment on an unpublished document and has not confirmed when the report will be officially published. [36]

European nuclear industry

EDF has said its third-generation EPR Flamanville 3 project (seen here in 2010) will be delayed until 2019, due to "both structural and economic reasons," and the project's total cost has climbed to EUR 11 billion in 2012. Flamanville-3 2010-07-15.jpg
EDF has said its third-generation EPR Flamanville 3 project (seen here in 2010) will be delayed until 2019, due to "both structural and economic reasons," and the project's total cost has climbed to EUR 11 billion in 2012.

Advanced new reactors under construction in Finland and France, which were meant to lead a nuclear renaissance, have been delayed and are running over-budget. [38] There has been a 15-year gap in building reactors, which has meant that there are difficulties in manufacturing the high quality parts required for a reactor. The new reactor also represents an advance over existing technologies, with better reliability and safety over Generation II reactors. Finally, they are "first-of-a-kind" industrial plants, having then all the kinds of problems and delays that should be avoided in following projects.

The European nuclear industry is working to develop Generation IV nuclear reactors. Foratom is a Brussels-based trade organisation that bills itself as the "voice of the nuclear industry". [39]

Along with companies and trade organisations like Foratom, General Electric, Hitachi, and Toshiba are all partners in the European Nuclear Industry. Other partners may include TEPCO from Japan and KEPCO from South Korea. The nuclear industry is regulated by governments and financing is often provided to private contractors who do the work.

Nuclear Safety is an ongoing discussion in the EU. The Western European Nuclear Regulators Association has members from 17 states or European countries. Nuclear safety faces many challenges. [40] WENRA addresses these challenges and commits itself to objective reporting. An example of a report is the 2011 publication, "Stress tests" specifications: Proposal by the WENRA Task Force [41]

Future plans

Currently, nine European countries are building new reactors, or seriously planning to build new ones: [42]

Slovenian government has issued an energy permit for building a new nuclear power plant in 2021. [43] Additionally, a 20 years life extension of the existing Krško Nuclear Power Plant is currently underway.

EPR new reactors under construction in Finland and France have been delayed and are running over-budget. [38] Similar problems are for new VVR reactors under construction in Mochovce, Slovakia, which are anyway closing to completion.

Power companies are building nuclear reactors in Finland and France and the French state continues to fund nuclear power, with a €1 billion added to help research for fourth-generation technology and nuclear safety. [44]

Several countries, among the ones owning nuclear power plants, have anyway expanded their nuclear power generation capacity by just upgrading existing reactors. Such upgrades granted from 10% to 29% more power per unit. [45]

Following the Fukushima nuclear disaster, Germany has permanently shut down eight of its reactors and pledged to close the rest by 2022; [46] but difficulties, costs and subsequent critics of planned energy transition could potentially harm this policy. [47] [48] Italy voted twice, in 1987 to make more difficult to build new plants (the vote was extensively interpreted by following governments as a total repeal of nuclear power plants, leading to the sudden shut down of all Italian operating reactors within few years), and in 2011 to keep their country non-nuclear. [49] Switzerland and Spain have banned the construction of new reactors. [50] Belgium is considering phasing out its nuclear plants. [50] France, frequently heralded as a nuclear commercial model for the world, was as of 2011 locked in a national debate over a partial nuclear phase-out. [50] In the same time, however, Sweden embraced a nuclear phase-out policy as early as 1980, so preceding all these countries; but only the two oldest reactors, of twelve, were shut down at their end of life; while in 2010 Swedish Parliament repealed this policy. [51]

Eight German nuclear power reactors (Biblis A and B, Brunsbuettel, Isar 1, Kruemmel, Neckarwestheim 1, Philippsburg 1 and Unterweser) were permanently shutdown on 6 August 2011, following the Japanese Fukushima nuclear disaster. Atom-Moratorium.svg
Eight German nuclear power reactors (Biblis A and B, Brunsbuettel, Isar 1, Kruemmel, Neckarwestheim 1, Philippsburg 1 and Unterweser) were permanently shutdown on 6 August 2011, following the Japanese Fukushima nuclear disaster.

As said, the 2011 Japanese Fukushima nuclear disaster has led some European energy officials to re-think nuclear power generation, especially in Germany and Switzerland. Switzerland has abandoned plans to replace its old nuclear reactors and will take the last one offline in 2034. Anti-nuclear movement intensified in Germany. In the following months the government decided to shut down eight reactors immediately (6 August 2011) and to have the other nine off the grid by the end of 2022. Renewable energy in Germany is believed to be able to compensate for much of the loss. In September 2011 Siemens, which had been responsible for constructing all 17 of Germany's existing nuclear power plants, announced that it would exit the nuclear sector following the Fukushima disaster and the subsequent changes to German energy policy. Chief executive Peter Löscher has supported the German government's planned Energiewende , its transition to renewable energy technologies, calling it a "project of the century" and saying Berlin's target of reaching 35% renewable energy sources by 2020 was feasible. [53] Despite this, the phasing out of nuclear energy seems to be much more difficult and costly than expected. The transition is tending more towards polluting fossil fuel plants than clean renewable energies, sparking several critics. Actually, transition plans did not meet their short-term goals and will hardly meet their medium-term goals; fossil fuel prices and technology are still more efficient, cheaper and easier to implement than heavily state-subsidised solar and wind power generation. [47] [48]

See also

Related Research Articles

<span class="mw-page-title-main">Nuclear power</span> Power generated from nuclear reactions

Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by nuclear fission of uranium and plutonium in nuclear power plants. Nuclear decay processes are used in niche applications such as radioisotope thermoelectric generators in some space probes such as Voyager 2. Generating electricity from fusion power remains the focus of international research.

<span class="mw-page-title-main">Dounreay</span> Location of two former nuclear research establishments in northern Scotland

Dounreay is a small settlement and the site of two large nuclear establishments on the north coast of Caithness in the Highland area of Scotland. It is on the A836 road nine miles west of Thurso.

<span class="mw-page-title-main">Nuclear power in the United States</span> Power source providing US electricity

In the United States, nuclear power is provided by 92 commercial reactors with a net capacity of 94.7 gigawatts (GW), with 61 pressurized water reactors and 31 boiling water reactors. In 2019, they produced a total of 809.41 terawatt-hours of electricity, which accounted for 20% of the nation's total electric energy generation. In 2018, nuclear comprised nearly 50 percent of US emission-free energy generation.

<span class="mw-page-title-main">Nuclear power in France</span> Overview of nuclear power in France

Since the mid 1980s, the largest source of electricity in France has been nuclear power, with a generation of 379.5 TWh in 2019 and a total electricity production of 537.7 TWh. In 2018, the nuclear share was 71.67%, the highest percentage in the world.

<span class="mw-page-title-main">Nuclear power in Japan</span> Overview of nuclear power in Japan

Prior to the 2011 Tōhoku earthquake and tsunami, Japan had generated 30% of its electrical power from nuclear reactors and planned to increase that share to 40%. Nuclear power energy was a national strategic priority in Japan. As of March 2020, of the 54 nuclear reactors in Japan, there were 42 operable reactors but only 9 reactors in 5 power plants were actually operating. A total of 24 reactors are scheduled for decommissioning or are in the process of being decommissioned. Others are in the process of being reactivated, or are undergoing modifications aimed to improve resiliency against natural disasters; Japan's 2030 energy goals posit that at least 33 will be reactivated by a later date.

As of 2023, Finland has five operating nuclear reactors in two power plants, all located on the shores of the Baltic Sea. Nuclear power provided about 34% of the country's electricity generation in 2020. The first research nuclear reactor in Finland was commissioned in 1962 and the first commercial reactor started operation in 1977. The fifth reactor started operation in April 2023.

Nuclear decommissioning is the process leading to the irreversible complete or partial closure of a nuclear facility, usually a nuclear reactor, with the ultimate aim at termination of the operating licence. The process usually runs according to a decommissioning plan, including the whole or partial dismantling and decontamination of the facility, ideally resulting in restoration of the environment up to greenfield status. The decommissioning plan is fulfilled when the approved end state of the facility has been reached.

<span class="mw-page-title-main">Uranium mining</span> Process of extraction of uranium ore from the ground

Uranium mining is the process of extraction of uranium ore from the ground. Over 50 thousand tons of uranium were produced in 2019. Kazakhstan, Canada, and Australia were the top three uranium producers, respectively, and together account for 68% of world production. Other countries producing more than 1,000 tons per year included Namibia, Niger, Russia, Uzbekistan, the United States, and China. Nearly all of the world's mined uranium is used to power nuclear power plants. Historically uranium was also used in applications such as uranium glass or ferrouranium but those applications have declined due to the radioactivity of uranium and are nowadays mostly supplied with a plentiful cheap supply of depleted uranium which is also used in uranium ammunition. In addition to being cheaper, depleted uranium is also less radioactive due to a lower content of short-lived 234
U
and 235
U
than natural uranium.

<span class="mw-page-title-main">Nuclear power in Germany</span> Overview of nuclear power in Germany

Nuclear power was used in Germany from the 1960s until it was phased out in April 2023.

<span class="mw-page-title-main">Krško Nuclear Power Plant</span> Nuclear power plant in Slovenia

The Krško Nuclear Power Plant is located in Vrbina in the City Municipality of Krško, Slovenia. The plant was connected to the power grid on October 2, 1981, and went into commercial operation on January 15, 1983. It was built as a joint venture by Slovenia and Croatia which were both part of Yugoslavia at the time.

<span class="mw-page-title-main">Economics of nuclear power plants</span>

Nuclear power construction costs have varied significantly across the world and in time. Large and rapid increases in cost occurred during the 1970s, especially in the United States. Recent cost trends in countries such as Japan and Korea have been very different, including periods of stability and decline in costs.

Nuclear power in Switzerland is generated by three nuclear power plants, with a total of four operational reactors (see list below). Nuclear power has contributed a steady fraction of around forty percent to the Swiss electricity production since 1985. In 2022, it produced 23 terawatt-hours (TWh) of electricity, and accounted for 37% of the nation's gross electricity generation of 62 TWh, while 55% was produced by hydroelectric plants and 8% came from conventional thermal power stations and non-hydro renewable energy sources.

<span class="mw-page-title-main">Nuclear power in Spain</span>

Spain has five active nuclear power plants with seven reactors producing 20% of the country's electricity as of 2023.

<span class="mw-page-title-main">Environmental impact of nuclear power</span>

Nuclear power has various environmental impacts, both positive and negative, including the construction and operation of the plant, the nuclear fuel cycle, and the effects of nuclear accidents. Nuclear power plants do not burn fossil fuels and so do not directly emit carbon dioxide. The carbon dioxide emitted during mining, enrichment, fabrication and transport of fuel is small when compared with the carbon dioxide emitted by fossil fuels of similar energy yield, however, these plants still produce other environmentally damaging wastes. Nuclear energy and renewable energy have reduced environmental costs by decreasing CO2 emissions resulting from energy consumption.

<span class="mw-page-title-main">Nuclear power debate</span> Controversy over the use of nuclear power

The nuclear power debate is a long-running controversy about the risks and benefits of using nuclear reactors to generate electricity for civilian purposes. The debate about nuclear power peaked during the 1970s and 1980s, as more and more reactors were built and came online, and "reached an intensity unprecedented in the history of technology controversies" in some countries. In the 2010s, with growing public awareness about climate change and the critical role that carbon dioxide and methane emissions plays in causing the heating of the Earth's atmosphere, there was a resurgence in the intensity of the nuclear power debate.

<span class="mw-page-title-main">High-level radioactive waste management</span> Management and disposal of highly radioactive materials

High-level radioactive waste management concerns how radioactive materials created during production of nuclear power and nuclear weapons are dealt with. Radioactive waste contains a mixture of short-lived and long-lived nuclides, as well as non-radioactive nuclides. There was reportedly some 47,000 tonnes of high-level nuclear waste stored in the United States in 2002.

Belgium has two nuclear power plants operating with a net capacity of 5,761 MWe. Electricity consumption in Belgium has increased slowly since 1990 and in 2016 nuclear power provided 51.3%, 41 TWh per year, of the country's electricity.

Slovakia has five operational nuclear reactors, with a combined net power capacity of 2,308 MWe, with a sixth coming on line shortly.

<span class="mw-page-title-main">Nuclear energy policy of the United States</span> Overview of the nuclear energy policy in the United States of America

The nuclear energy policy of the United States began in 1954 and continued with the ongoing building of nuclear power plants, the enactment of numerous pieces of legislation such as the Energy Reorganization Act of 1974, and the implementation of countless policies which have guided the Nuclear Regulatory Commission and the Department of Energy in the regulation and growth of nuclear energy companies. This includes, but is not limited to, regulations of nuclear facilities, waste storage, decommissioning of weapons-grade materials, uranium mining, and funding for nuclear companies, along with an increase in power plant building. Both legislation and bureaucratic regulations of nuclear energy in the United States have been shaped by scientific research, private industries' wishes, and public opinion, which has shifted over time and as a result of different nuclear disasters.

The Association of Regulators of Western Europe (WENRA), created on 4 February 1999, is an association of agencies or regulatory agencies in the field of nuclear countries of Western Europe.

References

  1. "Nuclear power plants provide about a quarter of EU's electricity". ec.europa.eu. Archived from the original on 19 February 2021. Retrieved 19 February 2021.
  2. 1 2 "The role of nuclear in a low-carbon Europe". energyfocus.the-eic.com. Energy Focus. Archived from the original on 16 January 2021. Retrieved 19 February 2021.
  3. "Power Reactor Information System". International Atomic Energy Agency. 18 September 2010. Archived from the original on 11 February 2012. Retrieved 18 September 2010.
  4. "Joint Declaration for a nuclear-free EU Taxonomy - BMUV-Meldung". bmuv.de (in German). Archived from the original on 20 February 2022. Retrieved 3 January 2022.
  5. Kurmayer, Nikolaus J. (12 November 2021). "Five EU countries form anti-nuclear alliance at COP26". www.euractiv.com. Archived from the original on 3 January 2022. Retrieved 3 January 2022.
  6. 1 2 "EU moves to label gas and nuclear energy as 'green'". dw.com. 1 January 2022. Archived from the original on 3 January 2022. Retrieved 3 January 2022.
  7. 1 2 European Commission (4 October 2012), Communication from the Commission to the Council and the European Parliament on the comprehensive risk and safety assessments ("stress tests") of nuclear power plants in the European Union and related activities (PDF), Brussels: Publications Office of the European Union, [* COM/2012/0571 final *], archived from the original (PDF) on 21 October 2012, retrieved 11 July 2021. Versions in multiple languages from EUR-Lex (Doc ref 52012DC0571 – EN – EUR-Lex), official website of European Union law.
  8. "Primary energy consumption by fuel (%) in 2005". EEA-European Environment Agency. Archived from the original on 12 July 2012.
  9. Fernanado Esteban (23 May 2002). "The future of nuclear energy in the European Union" (PDF). Directorate General for Energy and Transport: European Commission. Archived from the original (PDF) on 5 February 2009. Retrieved 5 August 2008.
  10. "EU ENERGY IN FIGURES 2007/2008" (PDF). Eurostat. Archived from the original (PDF) on 3 December 2008. Retrieved 17 October 2008.
  11. Archived 1 October 2017 at the Wayback Machine World Nuclear Association, Facts and Figures
  12. "Gas and electricity market statistics" (PDF). Eurostat. 26 October 2007. Archived from the original (PDF) on 13 May 2012. Retrieved 5 August 2008.
  13. "France's EDF plans to restart nation's entire nuclear fleet by early next year". Euronews. 4 September 2022.
  14. "EDF to restart all its nuclear reactors this winter - minister". Reuters. 2 September 2022.
  15. "Heat and Drought in Europe Strain Energy Supply". The New York Times . 18 August 2022.
  16. "Europe's driest summer in 500 years threatens crops, energy production". Reuters. 22 August 2022.
  17. "France plans full nationalisation of power utility EDF" Reuters. 6 July 2022.
  18. "Greenland bans uranium mining, halting rare earths project". Reuters .
  19. "Shock waves: what will a Spanish ban mean for uranium mining in Europe?".
  20. "Does France's emphasis on nuclear power guarantee its energy independence?" . Retrieved 17 July 2023.
  21. "Supply Agency of the European Atomic Energy Community" . Retrieved 17 July 2023.
  22. Stull, Graham (1 April 2011). Nuclear safety in the EU: In the wake of the Fukushima disaster, there is renewed concern for nuclear safety in the EU - Library briefing (PDF) (Report). Archived (PDF) from the original on 6 October 2014. Retrieved 9 November 2011.
  23. "Management of spent nuclear fuel and radioactive waste". Europa. SCADPlus. 22 November 2007. Archived from the original on 15 May 2008. Retrieved 5 August 2008.
  24. Commissariat à l'Énergie Atomique (CEA) (December 2007), "ELECNUC: Les Centrales Nuclecléaires dans le Monde" [Nuclear power plants in the world](PDF), Informations sur l'Énergie: Energy Handbook (in French) (2008 ed.), Gif-sur-Yvette, France: Institut de technico-économie des systèmes énergétiques; Direction de l'énergie nucléaire, ISSN   1280-9039, archived (PDF) from the original on 27 September 2011, retrieved 5 August 2008
  25. "Talk of nuclear revival rekindles waste concerns". NBC News. 20 January 2008. Archived from the original on 5 March 2016. Retrieved 5 August 2008.
  26. "Nuclear safety [EBRD – Sector]". Archived from the original on 26 October 2010.
  27. "ERDO – Working Group". www.erdo-wg.com. Archived from the original on 31 December 2021. Retrieved 11 July 2021.
  28. "Eastern Europe, a nuclear dustbin? | Presseurop (English)". Archived from the original on 8 October 2011. Retrieved 8 March 2011.
  29. "Environment News Service (ENS)". Archived from the original on 23 October 2011. Retrieved 18 August 2011.
  30. 1 2 "Press corner". European Commission – European Commission. Archived from the original on 25 August 2020. Retrieved 11 July 2021.
  31. "(see section "Project information")". Archived from the original on 21 July 2015. Retrieved 19 July 2015.
  32. "MAX and the MYRRHA | Article 4 | Issue 10 | Newsletters | News | EuCARD". Archived from the original on 16 June 2015. Retrieved 19 July 2015.
  33. "Archived copy" (PDF). Archived (PDF) from the original on 21 July 2015. Retrieved 19 July 2015.{{cite web}}: CS1 maint: archived copy as title (link)
  34. "Decommissioning of nuclear facilities". Energy – European Commission. 31 July 2014. Archived from the original on 23 June 2021. Retrieved 11 July 2021.
  35. "Nuclear Decommissioning: Decommission nuclear facilities – World Nuclear Association". www.world-nuclear.org. Archived from the original on 24 January 2020. Retrieved 11 July 2021.
  36. Christoph Steitz, Barbara Lewis (16 February 2016). "EU short of 118 billion euros in nuclear decommissioning funds". Reuters. Archived from the original on 21 February 2016. Retrieved 17 February 2016.
  37. EDF raises French EPR reactor cost to over $11 billion Archived 19 August 2017 at the Wayback Machine , Reuters, 3 December 2012.
  38. 1 2 James Kanter. In Finland, Nuclear Renaissance Runs Into Trouble Archived 15 April 2016 at the Wayback Machine New York Times, 28 May 2009.
  39. "About us - FORATOM". Archived from the original on 3 October 2011. Retrieved 5 October 2011.
  40. Western European Nuclear Regulators' Association. "About Us: WENRA's mission". www.wenra.eu. Archived from the original on 15 January 2022. Retrieved 22 February 2022.
  41. [WENRA] Western European Nuclear Regulators' Association Task Force (12 April 2011). "Stress tests" specifications: Proposal by the WENRA Task Force (PDF) (Report). Archived from the original (PDF) on 28 July 2011. Retrieved 28 July 2011.
  42. "World Nuclear Power Reactors | Uranium Requirements | Future Nuclear Power – World Nuclear Association". www.world-nuclear.org. Archived from the original on 8 October 2010. Retrieved 11 July 2021.
  43. "Izdano energetsko dovoljenje za projekt JEK2". www.energetika-portal.si. Retrieved 18 May 2022.
  44. "France nuclear power funding gets 1bn euro boost". BBC News. 27 June 2011. Archived from the original on 8 September 2019. Retrieved 27 June 2011.
  45. "Plans for New Nuclear Reactors Worldwide – World Nuclear Association". www.world-nuclear.org. Archived from the original on 31 January 2016. Retrieved 11 July 2021.
  46. Annika Breidthardt (30 May 2011). "German government wants nuclear exit by 2022 at latest". Reuters. Archived from the original on 26 December 2019. Retrieved 5 July 2021.
  47. 1 2 SPIEGEL, SPIEGEL Staff, DER (4 September 2013). "High Costs and Errors of German Transition to Renewable Energy". Der Spiegel. Archived from the original on 7 September 2021. Retrieved 11 July 2021.{{cite news}}: CS1 maint: multiple names: authors list (link)
  48. 1 2 "Three lessons from Germany's energy transition". Archived from the original on 20 October 2014. Retrieved 16 October 2014.
  49. "Italy Nuclear Referendum Results". 13 June 2011. Archived from the original on 25 March 2012.
  50. 1 2 3 Henry Sokolski (28 November 2011). "Nuclear Power Goes Rogue". Newsweek. Archived from the original on 25 May 2015. Retrieved 25 May 2015.
  51. "Nuclear Energy in Sweden – World Nuclear Association". www.world-nuclear.org. Archived from the original on 25 June 2021. Retrieved 11 July 2021.
  52. IAEA (2011). "Power Reactor Information System". Archived from the original on 11 February 2012. Retrieved 18 September 2010.
  53. "Siemens to quit nuclear industry". BBC News. 18 September 2011. Archived from the original on 25 June 2021. Retrieved 20 June 2018.