Nuclear power in Estonia

Last updated

In 2009, the Riigikogu (Estonian Parliament) approved National Development Plan of the Energy Sector until 2020, provisioning necessity to train specialists and pass relevant legislation by 2012 which would be necessary if Estonia were to carry out construction of a nuclear plant. [1]

In February, 2011 Government of Estonia approved of a nuclear power plant to be built by year 2023. In the meantime an increase in the output of oil shale fired power plants is planned by renovating additional blocks of soviet built plants. However, in the long run a forcible decrease in the oil shale share of the country's energy output is planned, with the nuclear power plant superseding oil shale with its environmental implications. [1] [2]

Pakri Islands have been named as one of the 6 potential sites for the reactor; however, at this early stage those remain only speculations. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Oil shale</span> Organic-rich fine-grained sedimentary rock containing kerogen

Oil shale is an organic-rich fine-grained sedimentary rock containing kerogen from which liquid hydrocarbons can be produced. In addition to kerogen, general composition of oil shales constitutes inorganic substance and bitumens. Based on their deposition environment, oil shales are classified as marine, lacustrine and terrestrial oil shales. Oil shales differ from oil-bearing shales, shale deposits that contain petroleum that is sometimes produced from drilled wells. Examples of oil-bearing shales are the Bakken Formation, Pierre Shale, Niobrara Formation, and Eagle Ford Formation. Accordingly, shale oil produced from oil shale should not be confused with tight oil, which is also frequently called shale oil.

As of 2023, Finland has five operating nuclear reactors in two power plants, all located on the shores of the Baltic Sea. Nuclear power provided about 34% of the country's electricity generation in 2020. The first research nuclear reactor in Finland was commissioned in 1962 and the first commercial reactor started operation in 1977. The fifth reactor is in the commissioning phase, having started producing electricity and currently scheduled to begin regular operation in March 2023.

<span class="mw-page-title-main">Eesti Energia</span> Company based in Estonia

Eesti Energia AS is a public limited energy company in Estonia with its headquarters in Tallinn. It is the world's biggest oil shale to energy company. The company was founded in 1939. As of 2014, it operates in Estonia, Latvia, Lithuania, Finland, Jordan and Utah, United States. In Estonia, the company operates under the name Eesti Energia, while using the brand name Enefit for international operations. The main raw material for energy production – oil shale – is extracted from mines located in Eastern-Estonia and owned by the company. The group of Eesti Energia has three main operation areas: electricity generation, shale oil production, and sale and distribution of electricity. Its shares are owned by the Government of Estonia.

<span class="mw-page-title-main">Narva Power Plants</span> Oil shale-fired power generation complex in Estonia

The Narva Power Plants are a power generation complex in and near Narva in Estonia, near the border with Leningrad Oblast, Russia. The complex consists of the world's two largest oil shale-fired thermal power plants, Eesti Power Plant and Balti Power Plant. In 2007, Narva Power Plants generated about 95% of total power production in Estonia. The complex is owned and operated by AS Narva Elektrijaamad, a subsidiary of Eesti Energia.

<span class="mw-page-title-main">Energy in Brazil</span> Overview of the production, consumption, import and export of energy and electricity in Brazil

Brazil is the 10th largest energy consumer in the world and the largest in South America. At the same time, it is an important oil and gas producer in the region and the world's second largest ethanol fuel producer. The government agencies responsible for energy policy are the Ministry of Mines and Energy (MME), the National Council for Energy Policy (CNPE), the National Agency of Petroleum, Natural Gas and Biofuels (ANP) and the National Agency of Electricity (ANEEL). State-owned companies Petrobras and Eletrobras are the major players in Brazil's energy sector, as well as Latin America's.

Nuclear power in Italy is a controversial topic. Italy started to produce nuclear energy in the early 1960s, but all plants were closed by 1990 following the Italian nuclear power referendum. As of 2018, Italy is one of only two countries, along with Lithuania, that completely phased out nuclear power for electricity generation after having operational reactors.

<span class="mw-page-title-main">Oil shale industry</span> Resource extraction industry

The oil shale industry is an industry of mining and processing of oil shale—a fine-grained sedimentary rock, containing significant amounts of kerogen, from which liquid hydrocarbons can be manufactured. The industry has developed in Brazil, China, Estonia and to some extent in Germany and Russia. Several other countries are currently conducting research on their oil shale reserves and production methods to improve efficiency and recovery. Estonia accounted for about 70% of the world's oil shale production in a study published in 2005.

<span class="mw-page-title-main">History of the oil shale industry</span> Timeline of the production of oil shale

The history of the oil shale industry started in ancient times. The modern industrial use of oil shale for oil extraction dates to the mid-19th century and started growing just before World War I because of the mass production of automobiles and trucks and the supposed shortage of gasoline for transportation needs. Between the World Wars oil shale projects were begun in several countries.

Oil shale in China is an important source of unconventional oil. A total Chinese oil shale resource amounts of 720 billion tonnes, located in 80 deposits of 47 oil shale basins. This is equal to 48 billion tonnes of shale oil. At the same time there are speculations that the actual resource may even exceed the oil shale resource of the United States.

<span class="mw-page-title-main">Oil shale in Jordan</span> Overview of the industry in Jordan

Oil shale in Jordan represents a significant resource. Oil shale deposits in Jordan underlie more than 60% of Jordanian territory. The total resources amounts to 31 billion tonnes of oil shale.

<span class="mw-page-title-main">Oil shale in Estonia</span> Overview of the industry in Estonia

There are two kinds of oil shale in Estonia, both of which are sedimentary rocks laid down during the Ordovician geologic period. Graptolitic argillite is the larger oil shale resource, but, because its organic matter content is relatively low, it is not used industrially. The other is kukersite, which has been mined for more than a hundred years. Kukersite deposits in Estonia account for 1% of global oil shale deposits.

<span class="mw-page-title-main">Narva Oil Plant</span> Oil facility in Narva, Estonia

Narva Oil Plant is a commercial scale shale oil retorting facility located in Auvere near Narva, Estonia. The plant produces shale oil from oil shale by using Galoter/Eneffit technology. The facility belongs to Enefit Energiatootmine, a subsidiary of Eesti Energia.

<span class="mw-page-title-main">Galoter process</span> Shale oil extraction technology

The Galoter process is a shale oil extraction technology for a production of shale oil, a type of synthetic crude oil. In this process, the oil shale is decomposed into shale oil, oil shale gas, and spent residue. A decomposition is caused by mixing raw oil shale with a hot oil shale ash, generated by combustion of carbonaceous residue (semi-coke) in the spent residue. The process was developed in 1950s and it is used commercially for the shale oil production in Estonia. There are projects for further development of this technology and for expansion of its usage, e.g. in Jordan and USA.

Morocco's energy policy is set independently by two agencies of the government: the Office of Hydrocarbons and Mining (ONHYM) which sets domestic oil policy, and the Office National de l'Electricité (ONE), which sets policy with regard to electricity. The two major weaknesses of the energy policy of Morocco are the lack of coordination between these two agencies and the lack of development of domestic energy sources.

In Hungary, nuclear energy plays a decisive role in the national energy mix, While in 2006, only 38 percent of the country's electricity came from nuclear fission, by 2014 that proportion had risen to over 53 percent. It is predicted that rate of around 50 percent will be permanent in the near future.

Electricity sector in Estonia is connected to Finland, Russia and the other Baltic countries. As of 2016, it was one of the dirtiest in the EU in terms of CO2 emissions, as oil-based fuels accounted for about 80% of domestic production. However, renewables had grown to over 13% of production whereas they were less than 1% in 2000. Thus, Estonia is one of the countries to have reached its EU renewable target by 2016.

<span class="mw-page-title-main">Energy in Jordan</span>

Energy in Jordan describes energy and electricity production, consumption and import in Jordan. Jordan is among the highest in the world in dependency on foreign energy sources, with 96% of the country's energy needs coming from imported oil and natural gas from neighboring Middle Eastern countries. This complete reliance on foreign oil imports consumes a significant amount of Jordan's GDP. This led the country to plan investments of $15 billion in renewable and nuclear energy. To further address these problems, the National Energy Strategy for 2007-2020 was created which projects to boost reliance on domestic energy sources from 4 per cent to 40 per cent by the end of the decade.

<span class="mw-page-title-main">Shandong Energy</span>

Shandong Energy Group Co. Ltd. is a state owned coal-mining company headquartered in Jinan, Shandong, China. It is among the seven largest Chinese coal companies. The group was created in March 2011 by merging six existing coal mining companies. These companies included Xinwen Mining Group, Zaozhuang Mining Group, Zibo Mining Group, Feicheng Mining Group, Linyi Mining Group and Longkou Mining Group.

<span class="mw-page-title-main">Ahtme Power Plant</span> Power station in Estonia

Ahtme Power Plant was an oil shale-fired power plant in Ahtme, Kohtla-Järve, Estonia. It was owned by VKG Soojus, a subsidiary of Viru Keemia Grupp. Until the end 2012, it supplied with heat Ahtme district of Kohtla-Järve and Jõhvi.

The Kohtla-Järve Power Plant is an oil shale-fired power plant in Kohtla-Järve, Estonia, about 15 km to north-west of the Ahtme Power Plant. It is owned by VKG Soojus, a subsidiary of Viru Keemia Grupp. It consists of Põhja Power Plant and Lõuna Power Plant.

References