Micropollutant

Last updated

Micropollutants are substances that even at very low concentrations have adverse effects on different environmental matrices. They are an inhomogeneous group of atroprogenic chemical compounds that is discharged by human to the environment. Commonly known micropollutants that might pose possible threats to ecological environments are, to name just a few:

Contents

To date, most of the scientists have identified wastewater treatment plants as the main source of micropollutants to aquatic ecosystems and/or adversely affect the extraction of potable water from raw water. [1] [2] Due to in many places drinking water is also extracted from surface waters, or the substances also reach the groundwater via the water, they are also found in raw water and must be laboriously removed by drinking water treatment. In addition, some of the substances are bioaccumulative, which means that they accumulate in animals or plants and thus also in the human food chain.

Background

(A) Detection frequencies of the 504 trace substances. Red line is detection frequency of 25%. (B) Maximum concentrations (cmax) of all compounds with cmax > 1 ug/L. (C) Detection frequencies of 96 compounds detected in more than 25% of the samples. The number next to each bar represents the mean concentration (cmed) in ug/L. (D) Maximum concentrations (cmax > 1 ug/L) of compounds detected in more than 25% of the samples. The number next to each bar represents the maximum concentration (cmax) in ug/L. Pesticides and biocides are shown in green, pharmaceuticals in blue and other chemicals in purple. Chemical compounds detected in European streams..jpg
(A) Detection frequencies of the 504 trace substances. Red line is detection frequency of 25%. (B) Maximum concentrations (cmax) of all compounds with cmax > 1 µg/L. (C) Detection frequencies of 96 compounds detected in more than 25% of the samples. The number next to each bar represents the mean concentration (cmed) in µg/L. (D) Maximum concentrations (cmax > 1 µg/L) of compounds detected in more than 25% of the samples. The number next to each bar represents the maximum concentration (cmax) in µg/L. Pesticides and biocides are shown in green, pharmaceuticals in blue and other chemicals in purple.

It is estimated that there are currently around 235,000 individual chemical substances registered worldwide. [3] A large number of these are released into wastewater by humans. If these are persistent, they remain during clarification in the wastewater and enter the environment. Some of them have ecotoxic relevant properties. In some cases, the chemical itself is not a concern, but its degradation products are.

This has been known for a longer time. As early as 1976, a study was published in which salicylic acid and clofibric acid were detected in the effluent of a sewage treatment plant in Kansas City. [4] We currently know that there are well over 1,000 substances in wastewater that pose a risk. Many others have not yet been sufficiently researched in this regard. [3]

In current studies of water quality in European rivers by the Helmholtz Centre for Environmental Research, 610 chemicals whose occurrence or problematic effects are known were examined in more detail and analyzed to determine whether and, if so, in what concentrations they occur in Europe's flowing waters. The evaluation of 445 samples from a total of 22 rivers showed that the researchers were able to detect a total of 504 of the 610 chemicals. In total, they found 229 pesticides and biocides, 175 pharmaceutical chemicals as well as surfactants, plastic and rubber additives, per- and polyfluoroalkyl substances (PFAS) and corrosion inhibitors. In 40 percent of the samples they detected up to 50 chemical substances, in another 41 percent between 51 and 100 chemicals. In 4 samples they were even able to detect more than 200 organic micropollutants. With 241 chemicals, they detected the most substances in a water sample from the Danube. [5]

Effect

The influences of micropollutants are varied. The best known are those of hormones that enter the water through the contraceptive pill. Several studies have shown that feminization occurs in an unusually high number of fish below discharges from sewage treatment plants, which has a negative impact on the population. One in five male smallmouth bass in U.S. rivers has developed female sexual characteristics. [6] Estrogen-like artificial compounds such as the plasticizer bisphenol A also have this effect. There is evidence that this also applies to humans. Such substances are called endocrine disruptors. Other substances, such as benzotriazole, which is added to dishwasher detergent as corrosion protection for silver cutlery, are suspected of being carcinogenic in addition to acting as an endocrine disruptor in the concentrations found. [7]

Another relevant factor is the danger posed by the spread of multi-resistant bacteria. There are two possible ways in which this can happen through wastewater. Firstly, by transporting already resistant strains into the receiving water due to inadequate treatment technology. The other possibility is the development of resistant cultures in the environment by introducing antibiotics into the water body. Preventing the entry of bacteria has long been used as a form of hygienic treatment using UV light or ozone, especially if the water is to be reused. Membrane systems such as membrane bioreactors or downstream ultrafiltration also serve this purpose. [8] Depending on the intensity and technology, some micropollutants are also removed in addition to the bacteria. The extent to which membrane technologies with low energy consumption are able to deplete trace substances is being investigated.

Legislation

Techniques for elimination of micropollutants via a so called fourth treatment stage during sewage treatment are implemented in Germany, Switzerland, Sweden and the Netherlands and tests are ongoing in several other countries. [9] In Switzerland it has been enshrined in law since 2016. [10]

Since 1 January 2025, there has been a recast of the Urban Waste Water Treatment Directive in the European Union, which requires the removal of a large proportion of micropollutants from wastewater. Due to the large number of amendments that have now been made, the directive was rewritten on November 27, 2024 as Directive (EU) 2024/3019, published in the EU Official Journal on December 12, and entered into force on January 1, 2025. The member states now have 31 months, i.e. until July 31, 2027, to adapt their national legislation to the new directive ("implementation of the directive").

The implementation of the framework guidelines is staggered until 2045, depending on the size of the sewage treatment plant and its population equivalents (PE). Sewage treatment plants with over 150,000 PE have priority and should be adapted immediately, as a significant proportion of the pollution comes from them followed by wastewater treatment plants with 10,000 to 150,000 PE that discharge into coastal waters or sensitive waters. The latter concerns waters with a low dilution ratio, waters from which drinking water is obtained and those that are coastal waters, or those used as bathing waters or used for mussel farming. Member States will be given the option not to apply fourth treatment in these areas if a risk assessment shows that there is no potential risk from micropollutants to human health and/or the environment. [11] [12]

Removal of micropollutants

Block diagram of a so-called Ulm process with powdered activated carbon (PAC) PAC Ulmer Verfahren.svg
Block diagram of a so-called Ulm process with powdered activated carbon (PAC)

Due to the large number of substances with very different chemical and physical properties, the removal of these substances is difficult. Three techniques and cominationes of them have been established so far. Two remove the contaminants with the help of activated carbon (PAC (Powdered Activated Carbon), GAC (Granulated Activated Carbon)) and one with ozone. [13] [14] [15]

In addition to that a large number of techniques are still in experimental stage. These include for example processes that work with plasma [16] or ultrasound, so-called AOP processes, applications with zeolites and cyclodextrins, membrane processes or photocatalysis.

See also

Related Research Articles

<span class="mw-page-title-main">Sewage sludge</span> Semi-solid material that is produced as a by-product during sewage treatment

Sewage sludge is the residual, semi-solid material that is produced as a by-product during sewage treatment of industrial or municipal wastewater. The term "septage" also refers to sludge from simple wastewater treatment but is connected to simple on-site sanitation systems, such as septic tanks.

<span class="mw-page-title-main">Chemical waste</span> Waste made from harmful chemicals

Chemical waste is any excess, unused, or unwanted chemical. Chemical waste may be classified as hazardous waste, non-hazardous waste, universal waste, or household hazardous waste, each of which is regulated separately by national governments and the United Nations. Hazardous waste is material that displays one or more of the following four characteristics: ignitability, corrosivity, reactivity, and toxicity. This information, along with chemical disposal requirements, is typically available on a chemical's Safety Data Sheet (SDS). Radioactive and biohazardous wastes require additional or different methods of handling and disposal, and are often regulated differently than standard hazardous wastes.

<span class="mw-page-title-main">Water treatment</span> Process that improves the quality of water

Water treatment is any process that improves the quality of water to make it appropriate for a specific end-use. The end use may be drinking, industrial water supply, irrigation, river flow maintenance, water recreation or many other uses, including being safely returned to the environment. Water treatment removes contaminants and undesirable components, or reduces their concentration so that the water becomes fit for its desired end-use. This treatment is crucial to human health and allows humans to benefit from both drinking and irrigation use.

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, with a negative impact on their uses. It is usually a result of human activities. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources. These are sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution may affect either surface water or groundwater. This form of pollution can lead to many problems. One is the degradation of aquatic ecosystems. Another is spreading water-borne diseases when people use polluted water for drinking or irrigation. Water pollution also reduces the ecosystem services such as drinking water provided by the water resource.

<span class="mw-page-title-main">Wastewater treatment</span> Converting wastewater into an effluent for return to the water cycle

Wastewater treatment is a process which removes and eliminates contaminants from wastewater. It thus converts it into an effluent that can be returned to the water cycle. Once back in the water cycle, the effluent creates an acceptable impact on the environment. It is also possible to reuse it. This process is called water reclamation. The treatment process takes place in a wastewater treatment plant. There are several kinds of wastewater which are treated at the appropriate type of wastewater treatment plant. For domestic wastewater the treatment plant is called a Sewage Treatment. Municipal wastewater or sewage are other names for domestic wastewater. For industrial wastewater, treatment takes place in a separate Industrial wastewater treatment, or in a sewage treatment plant. In the latter case it usually follows pre-treatment. Further types of wastewater treatment plants include Agricultural wastewater treatment and leachate treatment plants.

<span class="mw-page-title-main">Reclaimed water</span> Converting wastewater into water that can be reused for other purposes

Water reclamation is the process of converting municipal wastewater or sewage and industrial wastewater into water that can be reused for a variety of purposes. It is also called wastewater reuse, water reuse or water recycling. There are many types of reuse. It is possible to reuse water in this way in cities or for irrigation in agriculture. Other types of reuse are environmental reuse, industrial reuse, and reuse for drinking water, whether planned or not. Reuse may include irrigation of gardens and agricultural fields or replenishing surface water and groundwater. This latter is also known as groundwater recharge. Reused water also serve various needs in residences such as toilet flushing, businesses, and industry. It is possible to treat wastewater to reach drinking water standards. Injecting reclaimed water into the water supply distribution system is known as direct potable reuse. Drinking reclaimed water is not typical. Reusing treated municipal wastewater for irrigation is a long-established practice. This is especially so in arid countries. Reusing wastewater as part of sustainable water management allows water to remain an alternative water source for human activities. This can reduce scarcity. It also eases pressures on groundwater and other natural water bodies.

<span class="mw-page-title-main">Agricultural wastewater treatment</span> Farm management for controlling pollution from confined animal operations and surface runoff

Agricultural wastewater treatment is a farm management agenda for controlling pollution from confined animal operations and from surface runoff that may be contaminated by chemicals in fertilizer, pesticides, animal slurry, crop residues or irrigation water. Agricultural wastewater treatment is required for continuous confined animal operations like milk and egg production. It may be performed in plants using mechanized treatment units similar to those used for industrial wastewater. Where land is available for ponds, settling basins and facultative lagoons may have lower operational costs for seasonal use conditions from breeding or harvest cycles. Animal slurries are usually treated by containment in anaerobic lagoons before disposal by spray or trickle application to grassland. Constructed wetlands are sometimes used to facilitate treatment of animal wastes.

<span class="mw-page-title-main">Industrial wastewater treatment</span> Processes used for treating wastewater that is produced by industries as an undesirable by-product

Industrial wastewater treatment describes the processes used for treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater may be reused or released to a sanitary sewer or to a surface water in the environment. Some industrial facilities generate wastewater that can be treated in sewage treatment plants. Most industrial processes, such as petroleum refineries, chemical and petrochemical plants have their own specialized facilities to treat their wastewaters so that the pollutant concentrations in the treated wastewater comply with the regulations regarding disposal of wastewaters into sewers or into rivers, lakes or oceans. This applies to industries that generate wastewater with high concentrations of organic matter, toxic pollutants or nutrients such as ammonia. Some industries install a pre-treatment system to remove some pollutants, and then discharge the partially treated wastewater to the municipal sewer system.

Water supply and sanitation (WSS) in the European Union (EU) is the responsibility of each member state, but in the 21st century union-wide policies have come into effect. Water resources are limited and supply and sanitation systems are under pressure from urbanisation and climate change. Indeed, the stakes are high as the European Environmental Agency found that one European out of ten already suffers a situation of water scarcity and the IEA measured the energy consumption of the water sector to be equivalent to 3,5% of the electricity consumption of the EU.

<span class="mw-page-title-main">Sewage treatment</span> Process of removing contaminants from municipal wastewater

Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from. These can range from decentralized systems to large centralized systems involving a network of pipes and pump stations which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter from sewage,  using aerobic or anaerobic biological processes. A so-called quarternary treatment step can also be added for the removal of organic micropollutants, such as pharmaceuticals. This has been implemented in full-scale for example in Sweden.

<span class="mw-page-title-main">Environmental impact of pharmaceuticals and personal care products</span> Effects of drugs on the environment

The environmental effect of pharmaceuticals and personal care products (PPCPs) is being investigated since at least the 1990s. PPCPs include substances used by individuals for personal health or cosmetic reasons and the products used by agribusiness to boost growth or health of livestock. More than twenty million tons of PPCPs are produced every year. The European Union has declared pharmaceutical residues with the potential of contamination of water and soil to be "priority substances".[3]

<span class="mw-page-title-main">Urban Waste Water Treatment Directive</span>

The Urban Waste Water Treatment Directive 1991 European Union directive concerning urban waste water "collection, treatment and discharge of urban waste water and the treatment and discharge of waste water from certain industrial sectors". It aims "to protect the environment from adverse effects of waste water discharges from cities and "certain industrial sectors". Council Directive 91/271/EEC on Urban Wastewater Treatment was adopted on 21 May 1991, amended by the Commission Directive 98/15/EC.

<span class="mw-page-title-main">Environmental persistent pharmaceutical pollutant</span> Environmental term

The term environmental persistent pharmaceutical pollutants (EPPP) was first suggested in the nomination in 2010 of pharmaceuticals and environment as an emerging issue in a Strategic Approach to International Chemicals Management (SAICM) by the International Society of Doctors for the Environment (ISDE). The occurring problems from EPPPs are in parallel explained under environmental impact of pharmaceuticals and personal care products (PPCP). The European Union summarizes pharmaceutical residues with the potential of contamination of water and soil together with other micropollutants under "priority substances".

Sex is influenced by water pollutants that are encountered in everyday life. These sources of water can range from the simplicity of a water fountain to the entirety of the oceans. The pollutants within the water range from endocrine disruptor chemicals (EDCs) in birth control to Bisphenol A (BPA). Foreign substances such as chemical pollutants that cause an alteration of sex have been found in growing prevalence in the circulating waters of the world. These pollutants have affected not only humans, but also animals in contact with the pollutants.

<span class="mw-page-title-main">Ozonia</span>

Ozonia is a multinational water treatment equipment manufacturer headquartered in Zürich, Switzerland.

Drug pollution or pharmaceutical pollution is pollution of the environment with pharmaceutical drugs and their metabolites, which reach the aquatic environment through wastewater. Drug pollution is therefore mainly a form of water pollution.

<span class="mw-page-title-main">Moving bed biofilm reactor</span> Type of wastewater treatment

Moving bed biofilm reactor (MBBR) is a type of wastewater treatment process that was first invented by Professor Hallvard Ødegaard at Norwegian University of Science and Technology in the late 1980s. The process takes place in an aeration tank with plastic carriers that a biofilm can grow on. The compact size and cheap wastewater treatment costs offers many advantages for the system. The main objective of using MBBR being water reuse and nutrient removal or recovery. In theory, wastewater will be no longer considered waste, it can be considered a resource.

Contaminants of emerging concern (CECs) is a term used by water quality professionals to describe pollutants that have been detected in environmental monitoring samples, that may cause ecological or human health impacts, and typically are not regulated under current environmental laws. Sources of these pollutants include agriculture, urban runoff and ordinary household products and pharmaceuticals that are disposed to sewage treatment plants and subsequently discharged to surface waters.

<span class="mw-page-title-main">Water pollution in Canada</span> Overview of water pollution in Canada

Water pollution in Canada is generally local and regional in water-rich Canada, and most Canadians have "access to sufficient, affordable, and safe drinking water and adequate sanitation." Water pollution in Canada is caused by municipal sewage, urban runoff, industrial pollution and industrial waste, agricultural pollution, inadequate water infrastructure. This is a long-term threat in Canada due to "population growth, economic development, climate change, and scarce fresh water supplies in certain parts of the country."

References

  1. Hashmi, Muhammad Zaffar; Wang, Shuhong; Ahmed, Zulkfil, eds. (2022). Environmental Micropollutants. doi:10.1016/C2020-0-03749-7. ISBN   978-0-323-90555-8.[ page needed ]
  2. BMUB/UBA (ed.) (2017): Policy paper recommendations of the stakeholder dialogue "Federal Trace Substance Strategy" to politicians for the reduction of trace substance inputs into water bodies. Eds.: Hillenbrand, T.; Tettenborn, F.; Bloser, M.; Bonn: Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety/Dessau: Federal Environment Agency, p, accessed on January 6, 2025
  3. 1 2 Pistocchi, Alberto; Alygizakis, Nikiforos A.; Brack, Werner; Boxall, Alistair; Cousins, Ian T.; Drewes, Jörg E.; Finckh, Saskia; Gallé, Tom; Launay, Marie A.; McLachlan, Michael S.; Petrovic, Mira; Schulze, Tobias; Slobodnik, Jaroslav; Ternes, Thomas; Van Wezel, Annemarie; Verlicchi, Paola; Whalley, Caroline (November 2022). "European scale assessment of the potential of ozonation and activated carbon treatment to reduce micropollutant emissions with wastewater". Science of the Total Environment. 848: 157124. doi:10.1016/j.scitotenv.2022.157124. PMID   35792263.
  4. Hignite, Charles; Azarnoff, Daniel L. (January 1977). "Drugs and drug metabolites as environmental contaminants: Chlorophenoxyisobutyrate and salicylic acid in sewage water effluent". Life Sciences. 20 (2): 337–341. doi:10.1016/0024-3205(77)90329-0. PMID   839964.
  5. Finckh, Saskia; Carmona, Eric; Borchardt, Dietrich; Büttner, Olaf; Krauss, Martin; Schulze, Tobias; Yang, Soohyun; Brack, Werner (January 2024). "Mapping chemical footprints of organic micropollutants in European streams". Environment International. 183: 108371. doi:10.1016/j.envint.2023.108371. PMID   38103345.
  6. Environment: Sex hormones in wastewater feminize fish. In: Die Welt Online. September 15, 2009 (welt.de), accessed on 6. January 2025.
  7. Criteria for assessing the relevance of a trace substance for the environment for benzotriazole (dialog-spurenstoffstrategie.de PDF), accessed on 6. January 2025.
  8. Scientific Services, German Bundestag - Multi-resistant germs in water, research projects and studies, page 6, March 13, 2018, accessed on 6. January 2025.
  9. Borea, Laura; Ensano, Benny Marie B.; Hasan, Shadi Wajih; Balakrishnan, Malini; Belgiorno, Vincenzo; de Luna, Mark Daniel G.; Ballesteros, Florencio C.; Naddeo, Vincenzo (November 2019). "Are pharmaceuticals removal and membrane fouling in electromembrane bioreactor affected by current density?". Science of the Total Environment. 692: 732–740. Bibcode:2019ScTEn.692..732B. doi: 10.1016/j.scitotenv.2019.07.149 . PMID   31539981.
  10. The publication platform of federal law of Swiss: Verordnung des UVEK zur Überprüfung des Reinigungseffekts von Maßnahmen zur Elimination von organischen Spurenstoffen bei Abwasserreinigungsanlagen, 1. December 2016 (in German)
  11. EUR-LEX - Directive of the European Parliament and of the Council Concerning Urban Wastewater Treatment (Recast)
  12. EUR-LEX - Directive (EU) 2024/3019 of the European Parliament and of the Council of 27 November 2024 concerning urban wastewater treatment (recast) (Text with EEA relevance)
  13. micropoll.ch: GAC procedures, accessed on 6. January 2025.
  14. micropoll.ch: PAC procedures, accessed on 6. January 2025.
  15. micropoll.ch: Ozone procedures, accessed on 6. January 2025.
  16. University of Duisburg-Essen, Institute for Energy and Environmental Technology (ed.). "Investigations into the removal of organic trace substances from wastewater by the use of plasma processes (electrical discharges)" (PDF, 6.4 MB).