Environmental persistent pharmaceutical pollutant

Last updated
Pharmaceutical drugs have various known and unknown effects on the environment. FlattenedRoundPills.jpg
Pharmaceutical drugs have various known and unknown effects on the environment.

The term environmental persistent pharmaceutical pollutants (EPPP) was first suggested in the nomination in 2010 of pharmaceuticals and environment as an emerging issue in a Strategic Approach to International Chemicals Management (SAICM) [1] by the International Society of Doctors for the Environment (ISDE). The occurring problems from EPPPs are in parallel explained under environmental impact of pharmaceuticals and personal care products (PPCP). The European Union summarizes pharmaceutical residues with the potential of contamination of water and soil together with other micropollutants under "priority substances". [2]

Contents

Background

Pharmaceuticals comprise one of the few groups of chemicals that are specifically designed to act on living cells. They present a special risk when they persist in the environment.

With the exception of watercourses downstream of sewage treatment plants, the concentration of pharmaceuticals in surface and ground water is generally low. Concentrations in sewage sludge and in landfill leachate may be substantially higher [3] and provide alternative routes for EPPPs to enter the human and animal food-chain.

However, even at very low environmental concentrations (often ug/L or ng/L), the chronic exposure to environmental pharmaceuticals chemicals can add to the effects of other chemicals in the cocktail is still not studied. The different chemicals might be potentiating synergistic effects (higher than additive effects). An extremely sensitive group in this respect are foetuses.

EPPPs are already found in water all over the world. The diffuse exposure might contribute to

Environmental classification of pharmaceuticals

In Sweden, industry together with universities and the health care sector has developed a method for environmental risk assessment and environmental classification of drugs. [6] [7] Environmental risk refers to the risk of toxicity to the aquatic environment. It is based on the ratio between predicted environmental concentration of the substance (PEC) and the highest concentration of the substance that does not have a harmful effect in the environment (PNEC).

Environmental hazard expresses the inherent environmentally damaging characteristics of the substance in terms of persistence, bioaccumulation and toxicity. The toxicity tests used are acute toxicity of fish, acute toxicity of Daphnia sp. and growth inhibition test of algae. Most medications on the Swedish market are now classified. This gives the healthcare sector the possibility to make better choices when prescribing medicines.

Exposure

Concentrations in surface waters, groundwater and partially treated water are typically less than 0.1 µg/L (or 100 ng/L), and concentrations in treated water are generally below 0.05 µg/L (or 50 ng/L).[ medical citation needed ] However, all water on the earth is part of the same stable pool, and as larger amounts of pharmaceuticals are consumed, there is a risk that the concentration of pharmaceuticals in drinking water will increase.[ medical citation needed ]

Release into the environment

Pharmaceuticals reach the environment and cause water pollution mainly in three ways:

Due to improved measurement methods, pharmaceuticals may be detected today in concentrations that probably have been present already for decades but could not be measured before. Many pharmaceuticals are (after consumption) excreted or washed off: investigations have shown excretion rates between 30% and 70% of orally taken substances [9] and even higher rates considering externally applied ointments or gel. [10]

Some pharmaceuticals are degraded to various extents in sewage treatment plants, but others leave the plant in active forms. Active residues of pharmaceuticals have been detected in surface water, and they may persist in the environment for long periods of time. [11] Large amounts of antibiotics and other pharmaceuticals have been found downstream from sewage treatment plants in sub catchments where the discharge of hospital wastewater plays a major role [12] or in catchments with pharmaceutical industries. EPPPs from treated sewage sludge used as fertilizer are absorbed by soya, and antibiotics have been found in the leaves.

Drinking water

There are various pathways how pharmaceutical substances may enter drinking water. Predominantly, drinking water procurement comes from drinking water reservoirs, groundwater and bank filtration. If treated wastewater is discharged in catchments with drinking water procurement, the not eliminated pharmaceutical substances may be detected in the drinking water. The Netherlands for example gain 37% of their drinking water from surface water, mainly from bank filtration at Rhine and Meuse. Here certain attention is paid to pharmaceutical residues. [13]

In German drinking water catchments and rivers, EPPPs have been detected already, especially radiocontrast agents. [14] Moreover, pharmaceutical residues here partly have their origin in agriculture. [15] An evaluation of the German Federal Environment Agency of regional investigations carried out between 2009 and 2011 showed in total 27 different pharmaceutical substances in concentrations of more than 0.1 microgram per litre in German surface waters and up to 150 substances have been detected in total. Besides the radiocontrast agents, the painkiller diclofenac showed relevant concentrations. [16] For many micropollutants such as pharmaceuticals no threshold values in drinking water purification or waste water treatment are obligatory by now as the knowledge about effects is lacking or insufficiently proven. [17]

Some of these environmental pharmaceutical chemicals are well known to have serious genotoxic effects in humans.[ medical citation needed ] Half-life in nature varies depends on the environment (air, water, soil, sludge), but is more than one year for several compounds. [18] [19] [20]

Concentrations of EPPPs can vary from 1 ng per litre to 1 mg per litre (2). Serious effects of EPPPs on water-living organisms, especially on reproductive systems, and on microbial communities have been already shown. [20] [21] [22] [23] [ page needed ]

This would be of much less concern if the populations were to keep their excrement out of the wastewater via the use of the urine-diverting dry toilet or systems that recycle treated blackwater to flush toilets again indefinitely.

Assessment

Laws and regulations

Environmental persistent pharmaceutical pollutants (EPPP) have to be looked at in their entirety of the product chain. [25] Pharmaceutical residues may enter the environment in various phases and therefore the influence or impact regarding environmental effects can be regulated on different levels: [12]

Pharmaceuticals differ from other anthropogenic chemicals with respect to legal requirements and depending on the countries and cultural frame. Partly they are excluded in laws and regulations which control manufacture, marketing, use, and disposal of other consumer products of a chemical character (solvents, paints, glues etc.). As a consequence the possible negative environmental impact of pharmaceuticals may be less documented, in comparison to other consumer chemicals.

Laws and regulations in the European Union

In the European Union (EU) today, more than 3,000 pharmaceutical substances are approved. [26] In 2013 the EU started initiatives to address to the task of pharmaceutical residues in the water cycle. Here the commission was proposing to add 15 chemicals to the watch list of substances in the Water Framework Directive (WFD) [27] that are monitored and controlled in EU surface waters, including 3 pharmaceuticals (besides industrial chemicals, substances used in biocides and plant protection products): "The contamination of water and soil with pharmaceutical residues is an emerging environmental concern. In evaluating and controlling the risk to, or via, the aquatic environment from medicinal products, adequate attention should be paid to Union environmental objectives. In order to address that concern, the Commission should study the risks of environmental effects from medicinal products and provide an analysis of the relevance and effectiveness of the current legislative framework in protecting the aquatic environment and human health via the aquatic environment." [2]

The two hormones estradiol and ethinylestradiol and the painkiller diclofenac are present on the list since 2013 and in 2015 three macrolide antibiotics were added, too. [28] In 2018, due to "sufficient high-quality monitoring data are available for the substances tri-allate, oxadiazon, 2,6-ditert-butyl-4-methylphenol and diclofenac, those substances should be removed from the watch list" and that "new ecotoxicological information for the macrolide antibiotics clarithromycin and azithromycin, for methiocarb, and for the neonicotinoids imidacloprid, thiacloprid and thiamethoxam, which led it to revise the predicted no-effect concentrations for those substances". The objective of the implementation of the WFD watch list is to update the available information on the fate of the listed substances in the aquatic environment and consequently, to support a more detailed environmental risk assessment. A preparatory"study on the environmental risks of medicinal products" was commissioned by the Executive Agency for Health and Consumers and published in December 2013. This "BIO IS study" discusses a wide range of legislative and non-legislative "factors of influence" and related possible solutions. [10]

According to the 2013 Directive "the Commission shall [...until September 2015] develop a strategic approach to pollution of water by pharmaceutical substances. That strategic approach shall, where appropriate, include proposals enabling, to the extent necessary, the environmental impacts of medicines to be taken into account more effectively in the procedure for placing medicinal products on the market. In the framework of that strategic approach, the Commission shall, where appropriate, by 14 September 2017 propose measures to be taken at Union and / or Member State level, as appropriate, to address the possible environmental impacts of pharmaceutical substances [...] with a view to reducing discharges, emissions and losses of such substances into the aquatic environment, taking into account public health needs and the cost effectiveness of the measures proposed." [2]

Beyond the precautionary approach the EU was already aiming at proper disposal practices since 2004. An EU directive for human pharmaceuticals explicitly requires that all member states should establish collection systems for unused or expired medicines. Such systems were already in use in several member states at the time the legislation went into action in 2004. [29] The disposal regulations in the EU member states are still rather different, ranging from recommendations to throw unused or expired pharmaceuticals into the household waste that goes nearly completely to incineration (Germany) [30] with temperatures usually between 900–1,300 °C [31] to collection systems where leftovers are considered to be "hazardous waste" (Luxembourg). [32]

In France, the Cyclamed take-back program [33] enables people to bring back unused or expired pharmaceuticals back to the pharmacies. Wrong disposal via sink or toilet and hereby to the wastewater system still seems to be a problem in many EU member states: investigations in Germany showed that up to 24% of liquid pharmaceuticals and 7% of tablets or ointments are disposed always or at least "rarely" via the toilet or sink. [12]

This is one of the aspects considered in the above-mentioned EU strategic approaches. Moreover, regarding the market authorization for pharmaceuticals approved for marketing in the EU before 2006 the environmental assessment criteria have been different. In case the active substance of a human medicinal product today is assessed to be a hazardous substance or assessed to pose a risk to the environment: no refusal of the product is possible, even though in 2012 about 1,200 pharmaceutical substances were identified to be potentially relevant for an environmental monitoring. [34]

Effects of pharmaceuticals in the environment

Estradiol (estrogen, synthetic hormone)

Concentrations in surface water alone are not sufficient to assess the risk of negative environmental effects in the aquatic environment. Synthetic hormones are endocrine disruptors. Thus, estrogenic compounds like ethinylestradiol (estrogen hormone) at concentrations < 1 ng per litre may cause both vitellogenin production (a frequently used index for feminization of male fish), and structural change in their sex organs. It has also been demonstrated that fish exposed to sewage treatment plant (STP) effluent can take up and concentrate estrogenic compounds, including ethinylestradiol, to very high internal levels. These observations on feminization of fish by estrogenic compounds in STP effluents have been observed in many countries, and have also been observed in other species, like frogs, alligators and molluscs.

Cardiovascular medicines

Other examples of environmental impact in the aquatic environment of human medication concern both cardiovascular and neuro-psychiatric medicines. The non-selective beta-blocking agent propanolol was found to cause a significant decrease in egg production in medaka fish, at a concentration close to that demonstrated in the sewage treatment plants (STP) effluents.[ citation needed ] Gemfibrozil (cholesterol and triglycerides lowering drug) often appears in the effluent from STPs. At concentrations close to those reported in STP effluent, gemfibrozil lowers the blood levels of testosterone in fish.[ citation needed ]

Citalopram / Fluoxetine (serotonin reuptake inhibitor anti depressants, SSRIs)

Some SSRIs have been shown to accumulate in exposed fish. [35] [ dubious ] Citalopram has been detected in liver from wild perch in low µg per kg levels, and fluoxetine affects the serotonin system in the same way that it does in humans. Fluoxetine has also been shown to affect swimming activity in shellfish; whether this is linked to a disturbance of serotonin function in the brain is still unknown.

Antibiotics

High levels of antibiotics in the water are a cause for alarm as there is an increased risk of selecting resistant bacteria, an issue of global concern. This can lead to some highly effective antibiotics becoming ineffective. There are several examples: In India, bacteria resistant to ciprofloxacin have been found downstream pharmaceutical plants, genes for multi resistance were found in drinking water, and multi resistant Salmonella in water sprayed on vegetables. From Europe we know about the epidemic with multi resistant EHEC in summer 2011, originating from water sprayed vegetables.

The term "eco-shadow" has been introduced to describe the ecological impact of antibiotics. Antibiotics with a wide spectrum that are also stable will have a greater impact on the bacterial flora (a long eco-shadow) than those with a narrow antibacterial spectrum which disintegrates more rapidly (a short eco-shadow).

The ecological effects of tetracyclines and quinolones have been observed. They are not metabolized in the human body and are therefore excreted unmodified. When entered into the environment they are poorly degraded. They can be toxic to other animals, affecting particularly microorganism and fish. In the effluent from a sewage treatment plant in India, several broad spectrum antibiotics were found in concentrations toxic to bacteria and plants. In the sewage treatment plant itself, there were enterococcae resistant to all known antibiotics.

The development of resistant bacteria in sewage treatment plants is stimulated by high concentration of antibiotics (e.g. in plant sewage), large amounts of bacteria (e.g. from human sewage water that is added in plant sewage), and selection of Information that can be used to assess the nominated issue have been observed.

Gaps in knowledge

Effective environmental detection methods have to be developed and global detection strategy applied to map the current global situation. [ citation needed ]

There are currently no test methods to assess whether negative effects may occur after long-term environmental diffuse exposure in humans, during the vulnerable periods of development, on aquatic micro-organism or how it may affect other animals. [ citation needed ] Therefore, the precautionary principle must be guiding.

Concentrations in surface water alone are not sufficient to assess the risk of negative environmental effects of these synthetic chemicals. Consideration must be taken to bio-accumulation in fish and other aquatic food used by humans, as well as to additive and synergetic effects between pharmaceutical and other chemicals in the contaminated water.[ citation needed ]

In a small study, several pharmaceuticals were found in milk of goat, cow and human. [36] More research is needed to find out how common this is, the concentrations and the sources.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Pollutant</span> Substance or energy damaging to the environment

A pollutant or novel entity is a substance or energy introduced into the environment that has undesired effects, or adversely affects the usefulness of a resource. These can be both naturally forming or anthropogenic in origin. Pollutants result in environmental pollution or become public health concerns when they reach a concentration high enough to have significant negative impacts.

<span class="mw-page-title-main">Sewage sludge</span> Semi-solid material that is produced as a by-product during sewage treatment

Sewage sludge is the residual, semi-solid material that is produced as a by-product during sewage treatment of industrial or municipal wastewater. The term "septage" also refers to sludge from simple wastewater treatment but is connected to simple on-site sanitation systems, such as septic tanks.

<span class="mw-page-title-main">Chemical waste</span> Waste made from harmful chemicals

Chemical waste is any excess, unused, or unwanted chemical, especially those that cause damage to human health or the environment. Chemical waste may be classified as hazardous waste, non-hazardous waste, universal waste, or household hazardous waste. Hazardous waste is material that displays one or more of the following four characteristics: ignitability, corrosivity, reactivity, and toxicity. This information, along with chemical disposal requirements, is typically available on a chemical's Material Safety Data Sheet (MSDS). Radioactive waste requires special ways of handling and disposal due to its radioactive properties. Biohazardous waste, which may contain hazardous materials, is also handled differently.

A biocide is defined in the European legislation as a chemical substance or microorganism intended to destroy, deter, render harmless, or exert a controlling effect on any harmful organism. The US Environmental Protection Agency (EPA) uses a slightly different definition for biocides as "a diverse group of poisonous substances including preservatives, insecticides, disinfectants, and pesticides used for the control of organisms that are harmful to human or animal health or that cause damage to natural or manufactured products". When compared, the two definitions roughly imply the same, although the US EPA definition includes plant protection products and some veterinary medicines.

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources: sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution is either surface water pollution or groundwater pollution. This form of pollution can lead to many problems, such as the degradation of aquatic ecosystems or spreading water-borne diseases when people use polluted water for drinking or irrigation. Another problem is that water pollution reduces the ecosystem services that the water resource would otherwise provide.

<span class="mw-page-title-main">Triclosan</span> Antimicrobial agent

Triclosan is an antibacterial and antifungal agent present in some consumer products, including toothpaste, soaps, detergents, toys, and surgical cleaning treatments. It is similar in its uses and mechanism of action to triclocarban. Its efficacy as an antimicrobial agent, the risk of antimicrobial resistance, and its possible role in disrupted hormonal development remains controversial. Additional research seeks to understand its potential effects on organisms and environmental health.

<span class="mw-page-title-main">Lindane</span> Organochlorine chemical and an isomer of hexachlorocyclohexane

Lindane, also known as gamma-hexachlorocyclohexane (γ-HCH), gammaxene, Gammallin and benzene hexachloride (BHC), is an organochlorine chemical and an isomer of hexachlorocyclohexane that has been used both as an agricultural insecticide and as a pharmaceutical treatment for lice and scabies.

<span class="mw-page-title-main">Aquatic toxicology</span> Study of manufactured products on aquatic organisms

Aquatic toxicology is the study of the effects of manufactured chemicals and other anthropogenic and natural materials and activities on aquatic organisms at various levels of organization, from subcellular through individual organisms to communities and ecosystems. Aquatic toxicology is a multidisciplinary field which integrates toxicology, aquatic ecology and aquatic chemistry.

<span class="mw-page-title-main">Persistent organic pollutant</span> Organic compounds that are resistant to environmental degradation

Persistent organic pollutants (POPs) are organic compounds that are resistant to degradation through chemical, biological, and photolytic processes. They are toxic chemicals that adversely affect human health and the environment around the world. Because they can be transported by wind and water, most POPs generated in one country can and do affect people and wildlife far from where they are used and released.

<span class="mw-page-title-main">Triclocarban</span> Antimicrobial agent

Triclocarban is an antibacterial chemical once common in, but now phased out of, personal care products like soaps and lotions. It was originally developed for the medical field. Although the mode of action is unknown, TCC can be effective in fighting infections by targeting the growth of bacteria such as Staphylococcus aureus. Additional research seeks to understand its potential for causing antibacterial resistance and its effects on organismal and environmental health.

<span class="mw-page-title-main">Ecotoxicity</span>

Ecotoxicity, the subject of study in the field of ecotoxicology, refers to the biological, chemical or physical stressors that affect ecosystems. Such stressors could occur in the natural environment at densities, concentrations, or levels high enough to disrupt natural biochemical and physiological behavior and interactions. This ultimately affects all living organisms that comprise an ecosystem.

<span class="mw-page-title-main">Sewage treatment</span> Process of removing contaminants from municipal wastewater

Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from. These can range from decentralized systems to large centralized systems involving a network of pipes and pump stations which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter from sewage,  using aerobic or anaerobic biological processes. A so-called quarternary treatment step can also be added for the removal of organic micropollutants, such as pharmaceuticals. This has been implemented in full-scale for example in Sweden.

Environmental xenobiotics are xenobiotic compounds with a biological activity that are found as pollutants in the natural environment.

<span class="mw-page-title-main">Environmental impact of pharmaceuticals and personal care products</span> Effects of drugs on the environment

The environmental effect of pharmaceuticals and personal care products (PPCPs) is being investigated since at least the 1990s. PPCPs include substances used by individuals for personal health or cosmetic reasons and the products used by agribusiness to boost growth or health of livestock. More than twenty million tons of PPCPs are produced every year. The European Union has declared pharmaceutical residues with the potential of contamination of water and soil to be "priority substances".[3]

<span class="mw-page-title-main">Musk xylene</span> Chemical compound

Musk xylene is a synthetic musk fragrance which mimics natural musk. It has been used as a perfume fixative in a wide variety of consumer products, and is still used in some cosmetics and fragrances.

<span class="mw-page-title-main">Water quality law</span>

Water quality laws govern the protection of water resources for human health and the environment. Water quality laws are legal standards or requirements governing water quality, that is, the concentrations of water pollutants in some regulated volume of water. Such standards are generally expressed as levels of a specific water pollutants that are deemed acceptable in the water volume, and are generally designed relative to the water's intended use - whether for human consumption, industrial or domestic use, recreation, or as aquatic habitat. Additionally, these laws provide regulations on the alteration of the chemical, physical, radiological, and biological characteristics of water resources. Regulatory efforts may include identifying and categorizing water pollutants, dictating acceptable pollutant concentrations in water resources, and limiting pollutant discharges from effluent sources. Regulatory areas include sewage treatment and disposal, industrial and agricultural waste water management, and control of surface runoff from construction sites and urban environments. Water quality laws provides the foundation for regulations in water standards, monitoring, required inspections and permits, and enforcement. These laws may be modified to meet current needs and priorities.

<span class="mw-page-title-main">Galaxolide</span> Chemical compound

Galaxolide is a synthetic musk with a clean sweet musky floral woody odor used in fragrances. It is one of the musk components that perfume and cologne manufacturers use to add a musk odor to their products. Galaxolide was first synthesized in 1965, and used in the late 1960s in some fabric softeners and detergents. High concentrations were also incorporated in fine fragrances.

Sex is influenced by water pollutants that are encountered in everyday life. These sources of water can range from the simplicity of a water fountain to the entirety of the oceans. The pollutants within the water range from endocrine disruptor chemicals (EDCs) in birth control to Bisphenol A (BPA). Foreign substances such as chemical pollutants that cause an alteration of sex have been found in growing prevalence in the circulating waters of the world. These pollutants have affected not only humans, but also animals in contact with the pollutants.

Drug pollution or pharmaceutical pollution is pollution of the environment with pharmaceutical drugs and their metabolites, which reach the aquatic environment through wastewater. Drug pollution is therefore mainly a form of water pollution.

Contaminants of emerging concern (CECs) is a term used by water quality professionals to describe pollutants that have been detected in environmental monitoring samples, that may cause ecological or human health impacts, and typically are not regulated under current environmental laws. Sources of these pollutants include agriculture, urban runoff and ordinary household products and pharmaceuticals that are disposed to sewage treatment plants and subsequently discharged to surface waters.

References

  1. Strategic Approach to International Chemicals Management
  2. 1 2 3 4 DIRECTIVE 2013/39/EU of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy
  3. Aydın, Senar; Ulvi, Arzu; Bedük, Fatma; Aydın, Mehmet Emin (15 April 2022). "Pharmaceutical residues in digested sewage sludge: Occurrence, seasonal variation and risk assessment for soil". Science of the Total Environment. 817: 152864. Bibcode:2022ScTEn.817o2864A. doi:10.1016/j.scitotenv.2021.152864. PMID   34998750. S2CID   245807710.
  4. Chakraborty, Aritra; Adhikary, Satadal; Bhattacharya, Suchandra; Dutta, Sohini; Chatterjee, Sovona; Banerjee, Diyasha; Ganguly, Abhratanu; Rajak, Prem (2023-11-27). "Pharmaceuticals and Personal Care Products as Emerging Environmental Contaminants: Prevalence, Toxicity, and Remedial Approaches". ACS Chemical Health & Safety. 30 (6): 362–388. doi:10.1021/acs.chas.3c00071. ISSN   1871-5532.
  5. Kristiansson, Erik; Fick, Jerker; Janzon, Anders; Grabic, Roman; Rutgersson, Carolin; Weijdegård, Birgitta; Söderström, Hanna; Larsson, D. G. Joakim (2011). Rodriguez-Valera, Francisco (ed.). "Pyrosequencing of Antibiotic-Contaminated River Sediments Reveals High Levels of Resistance and Gene Transfer Elements". PLOS ONE. 6 (2): e17038. Bibcode:2011PLoSO...617038K. doi: 10.1371/journal.pone.0017038 . PMC   3040208 . PMID   21359229.
  6. Gunnarsson B, Wennmalm Å. (2006) Environmental risk assessment and environmental classification of drugs. In: Environment and Pharmaceuticals. Stockholm: Apoteket AB, 2006
  7. Environmentally Classified Pharmaceuticals 2011 Archived 2012-04-25 at the Wayback Machine . Stockholm: Stockholm County Council, 2011
  8. Lopez, F. J.; Pitarch, E.; Botero-Coy, A. M.; Fabregat-Safont, D.; Ibáñez, M.; Marin, J. M.; Peruga, A.; Ontañón, N.; Martínez-Morcillo, S.; Olalla, A.; Valcárcel, Y.; Varó, I.; Hernández, F. (2022-03-15). "Removal efficiency for emerging contaminants in a WWTP from Madrid (Spain) after secondary and tertiary treatment and environmental impact on the Manzanares River". Science of the Total Environment. 812: 152567. Bibcode:2022ScTEn.812o2567L. doi: 10.1016/j.scitotenv.2021.152567 . hdl: 10261/284741 . ISSN   0048-9697. PMID   34952067. S2CID   245438684.
  9. Eco-directed sustainable prescribing: feasibility for reducing water contamination by drugs, 2014
  10. 1 2 3 BIO Intelligence Service (2013), Study on the environmental risks of medicinal products, Final Report prepared for Executive Agency for Health and Consumers”
  11. Fatta-Kassinos, Despo; Meric, Sureyya; Nikolaou, Anastasia (2011-01-01). "Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research". Analytical and Bioanalytical Chemistry. 399 (1): 251–275. doi:10.1007/s00216-010-4300-9. ISSN   1618-2650. PMID   21063687. S2CID   583589.
  12. 1 2 3 noPILLS in waters, 2015
  13. "Human Pharmaceuticals in the Water Cycle, STOWA 2013" (PDF). Archived from the original (PDF) on 2015-09-25. Retrieved 2015-09-24.
  14. Regionaler Themenbericht des Landes Niedersachsen Arznei- und Röntgenkontrastmittelrückstände im Grundwasser
  15. Bayerisches Landesamt für Umwelt Archived 2015-09-25 at the Wayback Machine
  16. Hintergrundpapier des Umweltbundesamtes, 2014
  17. German Federal Environment Agency "Arzneimittel und Umwelt"
  18. Tysklind M et al. (2006) The spread of drugs in soil and water. In: Environment and Pharmaceuticals. Stockholm: Apoteket AB.
  19. Westerlund E. (2007) Screening of pharmaceuticals in Skåne Archived 2012-04-25 at the Wayback Machine . Länstyrelsen i Skåne län. [In Swedish]
  20. 1 2 Larsson J et al. (2006) Hormones and endocrine-disrupting substances in the environment. In: Environment and Pharmaceuticals. Stockholm: Apoteket AB.
  21. Tyler, Charles; Williams, Richard; Thorpe, Karen; Burn, Robert W.; Jobling, Susan (2009). "Statistical Modelling Suggests That Anti-Androgens in Wastewater Treatment Works Effluents are Contributing Causes of Widespread Sexual Disruption in Fish Living in English Rivers". Environmental Health Perspectives. 117 (5): 797–802. doi:10.1289/ehp.0800197. PMC   2685844 . PMID   19479024.
  22. Pharmaceuticals in the environment. Results of an EEA workshop. (2010) Luxembourg: Office for Official Publications of the European Communities.
  23. Brosché, Sara (2010). Effects of pharmaceuticals on natural microbial communities. Tolerance development, mixture toxicity, and synergistic interactions (PDF) (PhD thesis). University of Gothenburg. ISBN   978-91-85529-42-1.
  24. Fick, Jerker; Lindberg, Richard H.; Parkkonen, Jari; Arvidsson, Björn; Tysklind, Mats; Larsson, D. G. Joakim (2010). "Therapeutic Levels of Levonorgestrel Detected in Blood Plasma of Fish: Results from Screening Rainbow Trout Exposed to Treated Sewage Effluents". Environmental Science & Technology. 44 (7): 2661–6. Bibcode:2010EnST...44.2661F. doi:10.1021/es903440m. PMID   20222725.
  25. Dutch National Institute for Health and the Environment: Pharmaceutical product chain
  26. PILLS project report, 2012
  27. EU Water Framework Directive webpage
  28. EC IMPLEMENTING DECISION establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC, 2015
  29. EU DIRECTIVE 2004/27/EC amending Directive 2001/83/EC on the Community code relating to medicinal products for human use
  30. Recommendations of the Federal Ministry of Health, Germany 2015
  31. German association of thermal waste treatment, 2015
  32. Program Superdreckskescht Luxembourg, 2015
  33. webpage of the French cyclamed take-back program
  34. Nicole Adler, German Federal Environment Agency, 2015
  35. Sehonova, Pavla; Svobodova, Zdenka; Dolezelova, Petra; Vosmerova, Petra; Faggio, Caterina (2018-08-01). "Effects of waterborne antidepressants on non-target animals living in the aquatic environment: A review". The Science of the Total Environment. 631–632: 789–794. Bibcode:2018ScTEn.631..789S. doi:10.1016/j.scitotenv.2018.03.076. ISSN   1879-1026. PMID   29727988. S2CID   19217146.
  36. Azzouz, Abdelmonaim; Jurado-SáNchez, Beatriz; Souhail, Badredine; Ballesteros, Evaristo (2011). "Simultaneous Determination of 20 Pharmacologically Active Substances in Cow's Milk, Goat's Milk, and Human Breast Milk by Gas Chromatography–Mass Spectrometry". Journal of Agricultural and Food Chemistry. 59 (9): 5125–32. doi:10.1021/jf200364w. PMID   21469656.

Further reading

Updated list of references is found at Swedish Doctors for the Environment (partly in Swedish). The site Pharmaceuticals as pollutants is solely in English.

Articles

Reports