Firewater (fire fighting)

Last updated
Firefighter using a water hose to put out a fire Flickr - The U.S. Army - Putting out fires.jpg
Firefighter using a water hose to put out a fire

Firewater refers to water that has been used in firefighting and requires disposal. In many cases, it is a highly polluting material and requires special care in its disposal. [1]

Contents

Description

In many firefighting situations, large quantities of water remain after the fire has been extinguished. This firewater contains materials present in the building and also contains dissolved and particulate materials from combustion processes and materials generated through quenching.

Firewater can be particularly polluting when the building or site being extinguished itself contains potentially polluting materials such as pesticides, organic and inorganic chemical reagents, fertilizers, etc. Certain premises, including farms and the chemical industry, pose special risks because of the types of materials present. Premises containing quantities of plastics can also cause severe problems because of the taste and odor imparted to the firewater.

Releasing contaminated firewater into a river, lake or other body that supplies drinking water may render the untreated supply unsuitable for drinking or food preparation. Managing firewater frequently requires that the water be contained on the site until removed from a specialized treat statement. One of the recognized techniques is to contain the firewater in the drainage system using pneumatic bladders or lockable non-return valves, which can be activated automatically or manually.

Containment

Firewater containment is the process of containing the run-off from fighting fires. Firewater contains many hazardous substances that result from combustion, which can turn safe materials into toxic, polluting and environmentally damaging substances. The preferred method of firewater containment is to use pneumatic bladders/drain stoppers that block the outflow from the drain or pneumatic non-return valves, both of which can convert the drains into containment vessels (called sumps) from which the firewater can be pumped away into tankers for safe disposal.

Firewater containment is one of the many environmental factors considered alongside spill and pollution containment as an essential part of any company's environmental policy for ISO14001 accreditation.

Firewater runoff often leaks into the surrounding environment through different routes such as rain, sprinkler systems (for example) or others. [2] Containment of firewater is an integral component of preventing contamination of drainage and sewage systems, rivers, streams, and more. Pollution caused by firewater can last for hundreds of years following the initial use, making cost-effective and practical innovations to the current firewater containment system necessary for both the environment and businesses. Many of the largest negative environmental impacts due to firefighting related activities occur because of firewater runoff, making its containment necessary.

Firewater recycling is often considered a type of firewater containment and disposal to reduce water use and pollution, but the means to do so require further research. [3] Compact and mobile filtration units are proposed for this task to contribute to the spray and foaming of contaminated water for firefighters.

Increased recycling of firewater has allowed a surplus of benefits that have not been fully researched. Although, recycling is highly recommended by several countries. The table below describes a corresponding overview of commercially available firewater in-drain spill and pollution containment system examples. Products such as Flapstopper and similar technology provide the latest efficient state-of-the-art technology.

Isolation valves are often used to prevent firewater from escaping the site of a fire until it can properly be removed. CIRIA C736 Containment systems for the prevention of pollution, a central industry guidance document in the United Kingdom designed to assist owners/operators of facilities storing potentially hazardous substances, exists as a response to faulty containment aiming to aid commercial and industrial facilities in the containment of potential firewater use.

Overview of commercially available firewater in-drain spill and pollution containment system examples [4]
CharacteristicsDrainstopperFlapstopperTelestopper
Water-based firewaterSuitableSuitableSuitable with personal protective equipment
Oil-contaminated firewaterSuitableSuitableSuitable with personal protective equipment
Chemical-spill-contaminated firewaterSuitableSuitableSuitable with personal protective equipment
Bio-hazard-contaminated firewaterSuitableSuitableNo
Fully automatic systemYesYesNot applicable
Battery-powered systemYesYesNot applicable
Retrofitting optionYesYesYes
Re-usabilityYesUnlimitedYes
Drain opening (cm) range10 to 15010 to 150Up to 100
Rodent-proofProtection requiredFullyYes
Special featuresSimple to install from above ground; easy to maintain; occupies <10% of drain areaLow energy consumption; manual emergency overrideFully portable with 3 m long extension pole; manual or electric pump to inflate

Pollution and notable events

Firewater's main association with pollution is its ability to rapidly spread hazardous substances if not correctly contained following use for firefighting; firewater run-off is often the culprit in or a main contributor to many chemical spill pollution events (see Water pollution). The Sandoz chemical spill of 1986, for example, turned the Rhine river red with pollutants and affected much of the wildlife due to faulty containment of the firewater used in treating an agrochemical warehouse fire, [5] releasing 30 tonnes of toxic chemicals into the river.

Firewater containment and retention is an important issue because they can prevent the carrying of contaminants far from their sources through to connected bodies of water and neighboring areas. Drinking water, fish stocks, and other water-related necessities are potentially polluted by firewater. The Sandoz fire affected bodies of water connected to the Rhine in Switzerland, France, and Germany, despite the fire occurring only in Switzerland.

Often, damage to the environment following a fire at an industrial site occurs because of polluted firewater run-off. Water used in treating a fire may pick up contaminants from the burning object then leak into the surrounding environment when poorly contained. [6] Rain and other environmental factors can increase the firewater run-off spread of a containment area. The 2013 Smethwick fire involved the burning of 100,000 t of plastic recycling materials and required 14 dam3 of firewater used for treatment within the first 12 hours of the initial burning, all pumped from the Birmingham Canal with the potential to disrupt the natural state of the canal and aid in the carrying of contaminated materials from the fire.

The UNECE Safety Guidelines and Good Practices for Fire-water Retention exist as a response to the Sandoz fire, outlining guidelines and proper practices for managing firewater and firewater retention.

Fire prevention

Containment is the most commonly utilized methods of dealing with highly polluted fire-water, one other method would be the use of water distribution systems to give fire fighters an access to large quantities of water to combat large scale fires. This also gives firefighters access to high velocity water flow, which is known to have reduced toxicity and polluted levels. These, however, can still lead to polluted water. Even with high velocity water, it can still become polluted, even if the levels are indeed lower.

In using water as a main source of fire fighting, it is clear that there will always be some level of toxicity in the water that is utilized in the process of stopping these fires. Ultimately, the best method of lessening fire-water is lessening fires. The most successful way of lessening toxicity of water after fire fighting, is giving proper education to the public on preventing fires, in domestic homes and outside.

Related Research Articles

<span class="mw-page-title-main">Pollution</span> Introduction of contaminants that cause adverse change

Pollution is the introduction of contaminants into the natural environment that cause adverse change. Pollution can take the form of any substance or energy. Pollutants, the components of pollution, can be either foreign substances/energies or naturally occurring contaminants.

<span class="mw-page-title-main">Hazardous waste</span> Ignitable, reactive, corrosive and/or toxic unwanted or unusable materials

Hazardous waste is waste that has substantial or potential threats to public health or the environment. Hazardous waste is a type of dangerous goods. They usually have one or more of the following hazardous traits: ignitability, reactivity, corrosivity, toxicity. Listed hazardous wastes are materials specifically listed by regulatory authorities as hazardous wastes which are from non-specific sources, specific sources, or discarded chemical products. Hazardous wastes may be found in different physical states such as gaseous, liquids, or solids. A hazardous waste is a special type of waste because it cannot be disposed of by common means like other by-products of our everyday lives. Depending on the physical state of the waste, treatment and solidification processes might be required.

<span class="mw-page-title-main">Chemical waste</span> Waste made from harmful chemicals

Chemical waste is any excess, unused, or unwanted chemical, especially those that cause damage to human health or the environment. Chemical waste may be classified as hazardous waste, non-hazardous waste, universal waste, or household hazardous waste. Hazardous waste is material that displays one or more of the following four characteristics: ignitability, corrosivity, reactivity, and toxicity. This information, along with chemical disposal requirements, is typically available on a chemical's Material Safety Data Sheet (MSDS). Radioactive waste requires special ways of handling and disposal due to its radioactive properties. Biohazardous waste, which may contain hazardous materials, is also handled differently.

<span class="mw-page-title-main">Industrial waste</span> Waste produced by industrial activity or manufacturing processes

Industrial waste is the waste produced by industrial activity which includes any material that is rendered useless during a manufacturing process such as that of factories, mills, and mining operations. Types of industrial waste include dirt and gravel, masonry and concrete, scrap metal, oil, solvents, chemicals, scrap lumber, even vegetable matter from restaurants. Industrial waste may be solid, semi-solid or liquid in form. It may be hazardous waste or non-hazardous waste. Industrial waste may pollute the nearby soil or adjacent water bodies, and can contaminate groundwater, lakes, streams, rivers or coastal waters. Industrial waste is often mixed into municipal waste, making accurate assessments difficult. An estimate for the US goes as high as 7.6 billion tons of industrial waste produced annually, as of 2017. Most countries have enacted legislation to deal with the problem of industrial waste, but strictness and compliance regimes vary. Enforcement is always an issue.

<span class="mw-page-title-main">Toxic waste</span> Any unwanted material which can cause harm

Toxic waste is any unwanted material in all forms that can cause harm. Mostly generated by industry, consumer products like televisions, computers, and phones contain toxic chemicals that can pollute the air and contaminate soil and water. Disposing of such waste is a major public health issue.

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources: sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution is either surface water pollution or groundwater pollution. This form of pollution can lead to many problems, such as the degradation of aquatic ecosystems or spreading water-borne diseases when people use polluted water for drinking or irrigation. Another problem is that water pollution reduces the ecosystem services that the water resource would otherwise provide.

<span class="mw-page-title-main">Fly ash</span> Residue of coal combustion

Fly ash, flue ash, coal ash, or pulverised fuel ash – plurale tantum: coal combustion residuals (CCRs) – is a coal combustion product that is composed of the particulates that are driven out of coal-fired boilers together with the flue gases. Ash that falls to the bottom of the boiler's combustion chamber is called bottom ash. In modern coal-fired power plants, fly ash is generally captured by electrostatic precipitators or other particle filtration equipment before the flue gases reach the chimneys. Together with bottom ash removed from the bottom of the boiler, it is known as coal ash.

<span class="mw-page-title-main">Agricultural wastewater treatment</span> Farm management for controlling pollution from confined animal operations and surface runoff

Agricultural wastewater treatment is a farm management agenda for controlling pollution from confined animal operations and from surface runoff that may be contaminated by chemicals in fertilizer, pesticides, animal slurry, crop residues or irrigation water. Agricultural wastewater treatment is required for continuous confined animal operations like milk and egg production. It may be performed in plants using mechanized treatment units similar to those used for industrial wastewater. Where land is available for ponds, settling basins and facultative lagoons may have lower operational costs for seasonal use conditions from breeding or harvest cycles. Animal slurries are usually treated by containment in anaerobic lagoons before disposal by spray or trickle application to grassland. Constructed wetlands are sometimes used to facilitate treatment of animal wastes.

<span class="mw-page-title-main">Illegal dumping</span> Act of dumping waste illegally

Illegal dumping, also called fly dumping or fly tipping (UK), is the dumping of waste illegally instead of using an authorized method such as curbside collection or using an authorized rubbish dump. It is the illegal deposit of any waste onto land, including waste dumped or tipped on a site with no license to accept waste. The United States Environmental Protection Agency developed a “profile” of the typical illegal dumper. Characteristics of offenders include local residents, construction and landscaping contractors, waste removers, scrap yard operators, and automobile and tire repair shops.

<span class="mw-page-title-main">Bunding</span> Retaining wall around pollution source

Bunding, also called a bund wall, is a constructed retaining wall around storage "where potentially polluting substances are handled, processed or stored, for the purposes of containing any unintended escape of material from that area until such time as a remedial action can be taken."

<span class="mw-page-title-main">Soil contamination</span> Pollution of land by human-made chemicals or other alteration

Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The most common chemicals involved are petroleum hydrocarbons, polynuclear aromatic hydrocarbons, solvents, pesticides, lead, and other heavy metals. Contamination is correlated with the degree of industrialization and intensity of chemical substance. The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapour from the contaminants, or from secondary contamination of water supplies within and underlying the soil. Mapping of contaminated soil sites and the resulting clean ups are time-consuming and expensive tasks, and require expertise in geology, hydrology, chemistry, computer modelling, and GIS in Environmental Contamination, as well as an appreciation of the history of industrial chemistry.

<span class="mw-page-title-main">Ministry of Environment (South Korea)</span>

The Ministry of Environment is the South Korea branch of government charged with environmental protection. In addition to enforcing regulations and sponsoring ecological research, the Ministry manages the national parks of South Korea. Its headquarters is in Sejong City.

A waste pond or chemical pond is a small impounded water body used for the disposal of water pollutants, and sometimes utilized as a method of recycling or decomposing toxic substances. Such waste ponds may be used for regular disposal of pollutant materials or may be used as upset receivers for special pollution events. Often, chemical ponds themselves are addressed for cleanup action after their useful life is over or when a risk of groundwater contamination arises. Peak usage of waste ponds in the United States occurred in the period 1955 to 1985, after which the environmental risks of pond technology were sufficiently understood, such that alternative technologies for waste disposal gradually began to displace many of the waste ponds. Waste ponds often have pond liners, such as concrete or robust synthetic polymeric materials, to prevent infiltration of chemicals to soil or groundwater.

Spill containment is where spills of chemicals, oils, sewage etc. are contained within a barrier or drainage system rather than being absorbed at the surface. One method is to use an inflatable stopper or pneumatic bladder which is inserted into the outflow of a drainage system to create a containment vessel. In the event of a spill the stopper bladder is inflated to block the drain/s and to prevent the spilled agent from entering the ground water, stream or river.

<span class="mw-page-title-main">Environmental effects of paint</span>

The environmental effects of paint can vary depending on the type of paint used and mitigation measures. Traditional painting materials and processes can have harmful effects on the environment, including those from the use of lead and other additives. Measures can be taken to reduce its environmental effects, including accurately estimating paint quantities so waste is minimized, and use of environmentally preferred paints, coating, painting accessories, and techniques.

The Environmental Liability Directive2004/35/EC is a European Union law Directive on enforcement of claims against occupational activities which damage the environment. Its objective is to create "a more uniform regime for the prevention and remediation of environmental damage" across the EU.

A variety of factors affect the water and marine life along the coastline of Lebanon. These factors include marine pollution, environmental impact of shipping, oil spills, noxious liquid substances spills, sewage spills, and the dumping of radioactive and medical waste. Despite being a hotspot for marine life within the Mediterranean, the Lebanese watershed and coastline is home to very high levels of pollution that threaten the human, animal, and plant life that rely upon it.

<span class="mw-page-title-main">Electronic waste in India</span> Serious public health and environmental issues in India

Electronic waste is emerging as a serious public health and environmental issue in India. India is the "Third largest electronic waste producer in the world"; approximately 2 million tons of e-waste are generated annually and an undisclosed amount of e-waste is imported from other countries around the world.

Environmental issues in Toronto encompasses all those concerns and opportunities presented by the environment of Toronto. Many are harmful effects, such as the pollution of air and water, while others are factors influenced by urban infrastructures such as highways and public transportation services. As a result of the city's large population, substantial waste is produced annually.

<span class="mw-page-title-main">Waste management in South Korea</span>

Waste management in South Korea involves waste generation reduction and ensuring maximum recycling of the waste. This includes the appropriate treatment, transport, and disposal of the collected waste. South Korea's Waste Management Law was established in 1986, replacing the Environmental Protection Law (1963) and the Filth and Cleaning Law (1973). This new law aimed to reduce general waste under the waste hierarchy in South Korea. This Waste Management Law imposed a volume-based waste fee system, effective for waste produced by both household and industrial activities.

References

  1. Managing Firewater and major spillages - Environment Agency Guidance note PPG18( retrieved 19 April 2009) Archived 19 December 2007 at the Wayback Machine
  2. Cole, David (2019-08-15). "What is firewater containment?". Sandfield Penstock Solutions. Retrieved 2020-10-20.
  3. Scholz, Miklas (13 February 2014). "Firewater Storage, Treatment, Recycling and Management: New Perspectives Based on Experiences from the United Kingdom". Water. 6 (2): 367–380. doi: 10.3390/w6020367 .
  4. Back, B.M. "Environmental Innovations: An Introduction".{{cite web}}: Missing or empty |url= (help)
  5. "Supporting improved fire-water retention to prevent accidental water pollution". www.unece.org. Retrieved 2020-10-27.
  6. Collins, Phil (2016-06-21). "No smoke without fire water: it's time to close in on pollution containment". International Fire Fighter. Retrieved 2020-10-27.