Snowpack

Last updated
Digging a snowpit on Taku Glacier, in Alaska to measure snowpack depth and density Snowpitglacier.jpg
Digging a snowpit on Taku Glacier, in Alaska to measure snowpack depth and density

Snowpack is an accumulation of snow that compresses with time and melts seasonally, often at high elevation or high latitude. [1] [2] Snowpacks are an important water resource that feed streams and rivers as they melt, sometimes leading to flooding. Snowpacks provide water to down-slope communities for drinking and agriculture. [3] High-latitude or high-elevation snowpacks contribute mass to glaciers in their accumulation zones, where annual snow deposition exceeds annual melting. [4]

Contents

Assessing the formation and stability of snowpacks is important in the study and prediction of avalanches. [5] [6] Scientists study the physical properties of snow under different conditions and their evolution, and more specifically snow metamorphism, [7] [8] snow hydrology (that is, the contribution of snow melt to catchment hydrology), the evolution of snow cover with climate change and its effect on the ice–albedo feedback and hydrology, both on the ground and by using remote sensing. [9] Snow is also studied in a more global context of impact on animal habitats and plant succession. [10] An important effort is put into snow classification, both as a hydrometeor [11] and on the ground. [12]

Scientific applications

Graph of changing Wyoming Snowpack WY Snowpack.png
Graph of changing Wyoming Snowpack

Snowpack modeling is done for snow stability, flood forecasting, water resource management, and climate studies. [13] Snowpack modeling is either done by simple, statistical methods such as degree day or complex, physically based energy balance models such as SNOWPACK, CROCUS or SNOWMODEL. [14] [15]

See also

Related Research Articles

<span class="mw-page-title-main">Glacier</span> Persistent body of ice that is moving under its own weight

A glacier is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords. Although a glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.

<span class="mw-page-title-main">Snow</span> Precipitation in the form of ice crystal flakes

Snow comprises individual ice crystals that grow while suspended in the atmosphere—usually within clouds—and then fall, accumulating on the ground where they undergo further changes. It consists of frozen crystalline water throughout its life cycle, starting when, under suitable conditions, the ice crystals form in the atmosphere, increase to millimeter size, precipitate and accumulate on surfaces, then metamorphose in place, and ultimately melt, slide or sublimate away.

<span class="mw-page-title-main">Cryosphere</span> Those portions of Earths surface where water is in solid form

The cryosphere is an all-encompassing term for the portions of Earth's surface where water is in solid form, including sea ice, lake ice, river ice, snow cover, glaciers, ice caps, ice sheets, and frozen ground. Thus, there is a wide overlap with the hydrosphere. The cryosphere is an integral part of the global climate system with important linkages and feedbacks generated through its influence on surface energy and moisture fluxes, clouds, precipitation, hydrology, atmospheric and oceanic circulation.

<span class="mw-page-title-main">Avalanche</span> Rapid flow of a mass of snow down a slope

An avalanche is a rapid flow of snow down a slope, such as a hill or mountain.

<span class="mw-page-title-main">Glaciology</span> Scientific study of ice and natural phenomena involving ice

Glaciology is the scientific study of glaciers, or, more generally, ice and natural phenomena that involve ice.

<span class="mw-page-title-main">Snow line</span> Boundary between a snow-covered and snow-free surface

The climatic snow line is the boundary between a snow-covered and snow-free surface. The actual snow line may adjust seasonally, and be either significantly higher in elevation, or lower. The permanent snow line is the level above which snow will lie all year.

<span class="mw-page-title-main">Byrd Polar and Climate Research Center</span>

The Byrd Polar and Climate Research Center (BPCRC) is a polar, alpine, and climate research center at Ohio State University founded in 1960.

<span class="mw-page-title-main">Ice cap</span> Ice mass that covers less than 50,000 km² of land area

In glaciology, an ice cap is a mass of ice that covers less than 50,000 km2 (19,000 sq mi) of land area. Larger ice masses covering more than 50,000 km2 (19,000 sq mi) are termed ice sheets.

<span class="mw-page-title-main">Freshet</span> High water levels caused by melting snow and ice

The term freshet is most commonly used to describe a snowmelt, an annual high water event on rivers resulting from snow and river ice melting. A spring freshet can sometimes last several weeks on large river systems, resulting in significant inundation of flood plains as the snowpack melts in the river's watershed. Freshets can occur with differing strength and duration depending upon the depth of the snowpack and the local average rates of warming temperatures. Deeper snowpacks which melt quickly can result in more severe flooding. Late spring melts allow for faster flooding; this is because the relatively longer days and higher solar angle allow for average melting temperatures to be reached quickly, causing snow to melt rapidly. Snowpacks at higher altitudes and in mountainous areas remain cold and tend to melt over a longer period of time and thus do not contribute to major flooding. Serious flooding from freshets in southern US states are more often related to rain storms of large tropical weather systems rolling in from the South Atlantic or Gulf of Mexico, to add their powerful heating capacity to lesser snow packs. Tropically induced rainfall influenced quick melts can also affect snow cover to latitudes as far north as southern Canada, so long as the generally colder air mass is not blocking northward movement of low pressure systems.

<span class="mw-page-title-main">Glacier mass balance</span> Difference between accumulation and melting on a glacier

Crucial to the survival of a glacier is its mass balance of which surface mass balance (SMB), the difference between accumulation and ablation. Climate change may cause variations in both temperature and snowfall, causing changes in the surface mass balance. Changes in mass balance control a glacier's long-term behavior and are the most sensitive climate indicators on a glacier. From 1980 to 2012 the mean cumulative mass loss of glaciers reporting mass balance to the World Glacier Monitoring Service is −16 m. This includes 23 consecutive years of negative mass balances.

<span class="mw-page-title-main">Snowmelt</span> Surface runoff produced from melting snow

In hydrology, snowmelt is surface runoff produced from melting snow. It can also be used to describe the period or season during which such runoff is produced. Water produced by snowmelt is an important part of the annual water cycle in many parts of the world, in some cases contributing high fractions of the annual runoff in a watershed. Predicting snowmelt runoff from a drainage basin may be a part of designing water control projects. Rapid snowmelt can cause flooding. If the snowmelt is then frozen, very dangerous conditions and accidents can occur, introducing the need for salt to melt the ice.

<span class="mw-page-title-main">Glacier ice accumulation</span>

Glacier ice accumulation occurs through accumulation of snow and other frozen precipitation, as well as through other means including rime ice, avalanching from hanging glaciers on cliffs and mountainsides above, and re-freezing of glacier meltwater as superimposed ice. Accumulation is one element in the glacier mass balance formula, with ablation counteracting. With successive years in which accumulation exceeds ablation, then a glacier will experience positive mass balance, and its terminus will advance.

Snow hydrology is a scientific study in the field of hydrology which focuses on the composition, dispersion, and movement of snow and ice. Studies of snow hydrology predate the Anno Domini era, although major breakthroughs were not made until the mid eighteenth century.

Radioglaciology is the study of glaciers, ice sheets, ice caps and icy moons using ice penetrating radar. It employs a geophysical method similar to ground-penetrating radar and typically operates at frequencies in the MF, HF, VHF and UHF portions of the radio spectrum. This technique is also commonly referred to as "Ice Penetrating Radar (IPR)" or "Radio Echo Sounding (RES)".

<span class="mw-page-title-main">Meltwater</span> Water released by the melting of snow or ice

Meltwater is water released by the melting of snow or ice, including glacial ice, tabular icebergs and ice shelves over oceans. Meltwater is often found during early spring when snow packs and frozen rivers melt with rising temperatures, and in the ablation zone of glaciers where the rate of snow cover is reducing. Meltwater can be produced during volcanic eruptions, in a similar way in which the more dangerous lahars form. It can also be produced by the heat generated by the flow itself.

<span class="mw-page-title-main">Classifications of snow</span> Methods for describing snowfall events and the resulting snow crystals

Classifications of snow describe and categorize the attributes of snow-generating weather events, including the individual crystals both in the air and on the ground, and the deposited snow pack as it changes over time. Snow can be classified by describing the weather event that is producing it, the shape of its ice crystals or flakes, how it collects on the ground, and thereafter how it changes form and composition. Depending on the status of the snow in the air or on the ground, a different classification applies.

<span class="mw-page-title-main">Rahe (crater)</span> Martian geographical feature

Rahe is a crater on the planet Mars in the Tharsis quadrangle, positioned at 25.05° north latitude and 262.52° east longitude, between the volcanoes Ceraunius Tholus and Uranius Tholus. It measures approximately 34 kilometers in diameter and was named after Jürgen Rahe, a German-American astronomer and NASA science program director.

<span class="mw-page-title-main">Glacial stream</span> Body of liquid water that flows down a channel formed by a glacier

A glacier stream is a channelized area that is formed by a glacier in which liquid water accumulates and flows. Glacial streams are also commonly referred to as "glacier stream" or/and "glacial meltwater stream". The movement of the water is influenced and directed by gravity and the melting of ice. The melting of ice forms different types of glacial streams such as supraglacial, englacial, subglacial and proglacial streams. Water enters supraglacial streams that sit at the top of the glacier via filtering through snow in the accumulation zone and forming slush pools at the FIRN zone. The water accumulates on top of the glacier in supraglacial lakes and into supraglacial stream channels. The meltwater then flows through various different streams either entering inside the glacier into englacial channels or under the glacier into subglacial channels. Finally, the water leaves the glacier through proglacial streams or lakes. Proglacial streams do not only act as the terminus point but can also receive meltwater. Glacial streams can play a significant role in energy exchange and in the transport of meltwater and sediment.

<span class="mw-page-title-main">Snow science</span> Interdisciplinary field of hydrology, mechanics and meteorology

Snow science addresses how snow forms, its distribution, and processes affecting how snowpacks change over time. Scientists improve storm forecasting, study global snow cover and its effect on climate, glaciers, and water supplies around the world. The study includes physical properties of the material as it changes, bulk properties of in-place snow packs, and the aggregate properties of regions with snow cover. In doing so, they employ on-the-ground physical measurement techniques to establish ground truth and remote sensing techniques to develop understanding of snow-related processes over large areas.

Dr. Y. S. Rao is a professor at the Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai, India. He is working in the field of microwave remote sensing and land based applications for more than 34 years. His early research was focused on the use of Synthetic Aperture Radar (SAR) interferometry for landslides and land deformation monitoring, Digital Elevation Model generation, snow and glacier monitoring. He is also actively involved in developing several techniques for soil moisture estimation using passive and active microwave remote sensing data for more than 25 years. His current research involves SAR Polarimetry for crop characterization, classification, biophysical parameter retrieval using linear and compact-pol SAR data. Apart from applications, he has also contributed in the field of Polarimetric SAR system calibration and software tool development.

References

  1. "Definition of SNOWPACK". www.merriam-webster.com. 2024-02-25. Retrieved 2024-03-07.
  2. "Definition of 'snowpack'". Collins English Dictionary. Retrieved 2024-03-06.
  3. "Snowpack". education.nationalgeographic.org. Retrieved 2024-03-07.
  4. "Science of Glaciers". National Snow and Ice Data Center. Retrieved 2024-03-07.
  5. Cox, Steven M.; Fulsaas, Kris. Mountaineering. Mountaineers Books. pp. 346–347. ISBN   9781594851292.
  6. Tobias Kurzeder, Holger Feist, Powderguide: Managing Avalanche Risk, Mountain Sports Press, 978-0972482738, 190 pages
  7. Pinzer, B. R., Schneebeli, M., and Kaempfer, T. U.(2012) "Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography", TheCryosphere, 6, 1141–1155, doi : 10.5194/tc-6-1141-2012
  8. Lehning, Michael. "Fresh insights into snow metamorphism". WSL Institute for Snow and Avalanche Research SLF. Archived from the original on Sep 4, 2017.
  9. Mousavi, Seyedmohammad (2016). "Dry snowpack and freshwater icepack remote sensing using wideband Autocorrelation radiometry". 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp. 5288–5291. doi:10.1109/IGARSS.2016.7730377. ISBN   978-1-5090-3332-4. S2CID   23975901.
  10. Santeford, Henry S.; Smith, James Leroy (January 1974). Advanced Concepts and Techniques in the Study of Snow and Ice Resources: An Interdisciplinary Symposium; [papers]. National Academy of Sciences. p. 273. ISBN   9780309022354.
  11. Libbrecht, Kenneth G. "Snowflakes and Snow Crystals". www.its.caltech.edu.
  12. "IACS". www.cryosphericsciences.org.
  13. Oliver, John E. (2008-04-23). Encyclopedia of World Climatology. Springer. p. 660. ISBN   9781402032646.
  14. Viallon-Galinier, Léo; Hagenmuller, Pascal; Lafaysse, Matthieu (2020-12-01). "Forcing and evaluating detailed snow cover models with stratigraphy observations". Cold Regions Science and Technology. 180: 103163. doi:10.1016/j.coldregions.2020.103163. ISSN   0165-232X.
  15. Liston, Glen E.; Elder, Kelly (2006). "A distributed snow-evolution modeling system (SnowModel)". Journal of Hydrometeorology. 7(6): 1259-1276. 7: 1259–1276.