Industrial metabolism

Last updated

Industrial metabolism is a concept to describe the material and energy turnover of industrial systems. It was proposed by Robert Ayres in analogy to the biological metabolism as "the whole integrated collection of physical processes that convert raw materials and energy, plus labour, into finished products and wastes..." [1] In analogy to the biological concept of metabolism, which is used to describe the whole of chemical reactions in, for example, a cell to maintain its functions and reproduce itself, the concept of industrial metabolism describes the chemical reactions, transport processes, and manufacturing activities in industry.

Contents

Industrial metabolism presupposes a connection between different industrial activities by seeing them as part of a larger system, such as a material cycle or the supply chain of a commodity. System scientists, for example in industrial ecology, use the concept as paradigm to study the flow of materials or energy through the industrial system in order to better understand supply chains, the sources and causes of emissions, and the linkages between the industrial and the wider socio-technological system. [2]

Industrial metabolism is a subsystem of the anthropogenic or socioeconomic metabolism, which also comprises non-industrial human activities in households or the public sector.

See also

Related Research Articles

Industrial ecology (IE) is the study of material and energy flows through industrial systems. The global industrial economy can be modelled as a network of industrial processes that extract resources from the Earth and transform those resources into commodities which can be bought and sold to meet the needs of humanity. Industrial ecology seeks to quantify the material flows and document the industrial processes that make modern society function. Industrial ecologists are often concerned with the impacts that industrial activities have on the environment, with use of the planet's supply of natural resources, and with problems of waste disposal. Industrial ecology is a young but growing multidisciplinary field of research which combines aspects of engineering, economics, sociology, toxicology and the natural sciences.

Ecological modernization is a school of thought in the social sciences that argues that the economy benefits from moves towards environmentalism. It has gained increasing attention among scholars and policymakers in the last several decades internationally. It is an analytical approach as well as a policy strategy and environmental discourse.

Howard Thomas Odum, usually cited as H. T. Odum, was an American ecologist. He is known for his pioneering work on ecosystem ecology, and for his provocative proposals for additional laws of thermodynamics, informed by his work on general systems theory.

In thermodynamics, the exergy of a system is the maximum useful work possible during a process that brings the system into equilibrium with a heat reservoir, reaching maximum entropy. When the surroundings are the reservoir, exergy is the potential of a system to cause a change as it achieves equilibrium with its environment. Exergy is the energy that is available to be used. After the system and surroundings reach equilibrium, the exergy is zero. Determining exergy was also the first goal of thermodynamics. The term "exergy" was coined in 1956 by Zoran Rant (1904–1972) by using the Greek ex and ergon meaning "from work", but the concept was developed by J. Willard Gibbs in 1873.

Energy accounting is a system used to measure, analyze and report the energy consumption of different activities on a regular basis. This is done to improve energy efficiency, and to monitor the environment impact of energy consumption.

Environmental accounting is a subset of accounting proper, its target being to incorporate both economic and environmental information. It can be conducted at the corporate level or at the level of a national economy through the System of Integrated Environmental and Economic Accounting, a satellite system to the National Accounts of Countries.

Systems ecology A holistic approach to the study of ecological systems

Systems ecology is an interdisciplinary field of ecology, a subset of Earth system science, that takes a holistic approach to the study of ecological systems, especially ecosystems. Systems ecology can be seen as an application of general systems theory to ecology. Central to the systems ecology approach is the idea that an ecosystem is a complex system exhibiting emergent properties. Systems ecology focuses on interactions and transactions within and between biological and ecological systems, and is especially concerned with the way the functioning of ecosystems can be influenced by human interventions. It uses and extends concepts from thermodynamics and develops other macroscopic descriptions of complex systems.

Robert Ayres (scientist)

Robert Underwood Ayres is an American-born physicist and economist. His career has focused on the application of physical ideas, especially the laws of thermodynamics, to economics; a long-standing pioneering interest in material flows and transformations —a concept which he originated. His most recent work challenges the widely held economic theory of growth.

The term anthroposystem is used to describe the anthropological analogue to the ecosystem. In other words, the anthroposystem model serves to compare the flow of materials through human systems to those in naturally occurring systems. As defined by Santos, an anthroposystem is "the orderly combination or arrangement of physical and biological environments for the purpose of maintaining human civilization...built by man to sustain his kind." The anthroposystem is intimately linked to economic and ecological systems as well.

Nicholas Georgescu-Roegen Romanian mathematician, statistician and economist

Nicholas Georgescu-Roegen was a Romanian mathematician, statistician and economist. He is best known today for his 1971 magnum opus The Entropy Law and the Economic Process, in which he argued that all natural resources are irreversibly degraded when put to use in economic activity. A progenitor and a paradigm founder in economics, Georgescu-Roegen's work was decisive for the establishing of ecological economics as an independent academic sub-discipline in economics.

Anthropogenic metabolism, also referred to as 'metabolism of the anthroposphere', is a term used in industrial ecology, material flow analysis, and waste management to describe the material and energy turnover of human society. It emerges from the application of systems thinking to the industrial and other man-made activities and it is a central concept of sustainable development. In modern societies, the bulk of anthropogenic (man-made) material flows is related to one of the following activities: sanitation, transportation, habitation, and communication, which were "of little metabolic significance in prehistoric times". Global man-made stocks of steel in buildings, infrastructure, and vehicles, for example, amount to about 25 Gigatonnes, a figure that is surpassed only by construction materials such as concrete. Sustainable development is closely linked to the design of a sustainable anthropogenic metabolism, which will entail substantial changes in the energy and material turnover of the different human activities. Anthropogenic metabolism can be seen as synonymous to social or socioeconomic metabolism. It comprises both industrial metabolism and urban metabolism.

Material flow analysis (MFA), also referred to as substance flow analysis (SFA), is an analytical method to quantify flows and stocks of materials or substances in a well-defined system. MFA is an important tool to study the bio-physical aspects of human activity on different spatial and temporal scales. It is considered a core method of industrial ecology or anthropogenic, urban, social and industrial metabolism. MFA is used to study material, substance, or product flows across different industrial sectors or within ecosystems. MFA can also be applied to a single industrial installation, for example, for tracking nutrient flows through a waste water treatment plant. When combined with an assessment of the costs associated with material flows this business-oriented application of MFA is called material flow cost accounting. MFA is an important tool to study the circular economy and to devise material flow management. Since the 1990s, the number of publications related to material flow analysis has grown steadily. Peer-reviewed journals that publish MFA-related work include the Journal of Industrial Ecology, Ecological Economics, Environmental Science and Technology, and Resources, Conservation, and Recycling.

Material flow accounting (MFA) is the study of material flows on a national or regional scale. It is therefore sometimes also referred to as regional, national or economy-wide material flow analysis.

Ecological design or ecodesign is an approach to designing products and services with special consideration for the environmental impacts of the product during its whole lifecycle. It was defined by Sim Van der Ryn and Stuart Cowan as "any form of design that minimizes environmentally destructive impacts by integrating itself with living processes." Ecological design is an integrative ecologically responsible design discipline. Ecological design can also be defined as the process within design and development of integration of environmental consideration into product and service design and development with the aim of reducing environmental impacts of products through their life cycle.

The establishment of industrial ecology as field of scientific research is commonly attributed to an article devoted to industrial ecosystems, written by Frosch and Gallopoulos, which appeared in a 1989 special issue of Scientific American. Industrial ecology emerged from several earlier ideas and concepts, some of which date back to the 19th century.

This is a glossary of environmental science.

Urban metabolism is a model to facilitate the description and analysis of the flows of the materials and energy within cities, such as undertaken in a material flow analysis of a city. It provides researchers with a metaphorical framework to study the interactions of natural and human systems in specific regions. From the beginning, researchers have tweaked and altered the parameters of the urban metabolism model. C. Kennedy and fellow researchers have produced a clear definition in the 2007 paper The Changing Metabolism of Cities claiming that urban metabolism is "the sum total of the technical and socio-economic process that occur in cities, resulting in growth, production of energy and elimination of waste." With the growing concern of climate change and atmospheric degradation, the use of the urban metabolism model has become a key element in determining and maintaining levels of sustainability and health in cities around the world. Urban metabolism provides a unified or holistic viewpoint to encompass all of the activities of a city in a single model.

Social metabolism Study of materials and energy flows between nature and society

Social metabolism or socioeconomic metabolism is the set of flows of materials and energy that occur between nature and society, between different societies, and within societies. These human-controlled material and energy flows are a basic feature of all societies but their magnitude and diversity largely depend on specific cultures, or sociometabolic regimes. Social or socioeconomic metabolism is also described as "the self-reproduction and evolution of the biophysical structures of human society. It comprises those biophysical transformation processes, distribution processes, and flows, which are controlled by humans for their purposes. The biophysical structures of society and socioeconomic metabolism together form the biophysical basis of society."

In economics, dematerialization refers to the absolute or relative reduction in the quantity of materials required to serve economic functions in society. In common terms, dematerialization means doing more with less. This concept is similar to ephemeralization as proposed by Buckminster Fuller.

Eco-restructuring is the implication for an ecologically sustainable economy. The principle of ecological modernization establishes the core literature of the functions that eco-restructuring has within a global regime. Eco-restructuring has an emphasis on the technological progressions within an ecological system. Government officials implement environmental policies to establish the industrial- ecological progressions that enable the motion of economic modernization. When establishing economic growth, policy makers focus on the progression towards a sustainable environment by establishing a framework of ecological engineering. Government funding is necessary when investing in efficient technologies to stimulate technological development.

References

  1. Ayres, R.U., 1994. Industrial metabolism: Theory and policy. In: Ayres, R.U., Simonis, U.K. (Eds.), Industrial Metabolism: Restructuring for Sustainable Development. United Nations University Press, Tokyo, pp. 3–20.
  2. S. Anderberg (1998), "Industrial metabolism and linkages between economics, ethics, and the environment", Ecological Economics, 24, pp 311-320

Further reading