Anthropogenic metabolism

Last updated

Anthropogenic metabolism, also referred to as metabolism of the anthroposphere, is a term used in industrial ecology, material flow analysis, and waste management to describe the material and energy turnover of human society. It emerges from the application of systems thinking to the industrial and other man-made activities and it is a central concept of sustainable development. In modern societies, the bulk of anthropogenic (man-made) material flows is related to one of the following activities: sanitation, transportation, habitation, and communication, which were "of little metabolic significance in prehistoric times". [1] Global man-made stocks of steel in buildings, infrastructure, and vehicles, for example, amount to about 25 Gigatonnes (more than three tonnes per person), a figure that is surpassed only by construction materials such as concrete. [2] Sustainable development is closely linked to the design of a sustainable anthropogenic metabolism, which will entail substantial changes in the energy and material turnover of the different human activities. Anthropogenic metabolism can be seen as synonymous to social or socioeconomic metabolism. It comprises both industrial metabolism and urban metabolism.

Contents

Negative effects

In layman's terms, anthropogenic metabolism indicates the human impact on the world by the modern industrialized world. Much of these impacts include waste management, ecological footprints, water footprints, and flow analysis (i.e., the rate at which each human depleted the energy around them). Most anthropogenic metabolism happens in developed countries. According to Rosales, "Economic growth is at present the main cause of increased climate change, and climate change is a main mechanism of biodiversity loss; because of this, economic growth is a major catalyst of biodiversity loss." [3]

A water footprint is the amount of water that each person uses in their daily lives. Most of the world's water is salt water which cannot be used in human food or water supplies. Therefore, the freshwater sources that were once plentiful are now being diminished due to anthropogenic metabolism of the growing population. The water footprint encompasses how much fresh water is needed for each consumer's needs. According to J. Allan, "there is a huge impact of water use on stores of surface and groundwater and on flows to which water is returned after use. These impacts are shown to be particularly high for manufacturing industries. For example, that there are less than 10 economies worldwide that have a significant water surplus, but that these economies have successfully met, or have the potential to meet, the water deficits of the other 190 economies. Consumers enjoy the delusion of food and water security provided by virtual water trade. [4]

In addition, the ecological footprint is a more economical and land-focused way of looking at human impact. Developed countries tend to have higher ecological footprints, which do not strictly correspond to a country's total population. According to research by Dias de Oliveira, Vaughan and Rykiel, "The Ecological Footprint...is an accounting tool based on two fundamental concepts, sustainability and carrying capacity. It makes it possible to estimate the resource consumption and waste assimilation requirements of a defined human population or economy sector in terms of corresponding productive land area." [5]

One of the major cycles that humans can contribute to that cause a major impact on climate change is the nitrogen cycle. This comes from nitrogen fertilizers that humans use. Gruber and Galloway have researched, "The massive acceleration of the nitrogen cycle caused by the production and industrial use of artificial nitrogen fertilizers worldwide has led to a range of environmental problems. Most important is how the availability of nitrogen will affect the capacity of Earth's biosphere to continue absorbing carbon from the atmosphere and to thereby continue helping to mitigate climate change." [6]

The carbon cycle is another major contributor to climate change primarily from anthropogenic metabolism. A couple examples of how humans contribute to the carbon in the atmosphere is by burning fossil fuels and deforestation. By taking a close look at the carbon cycle Peng, Thomas and Tian have discovered that, "It is recognized that human activities, such as fossil fuel burning, land-use change, and forest harvesting at a large scale, have resulted in the increase of greenhouse gases in the atmosphere since the onset of the Industrial Revolution. The increasing amounts of greenhouse gases, particularly CO2 in the atmosphere, is believed to have induced climate change and global warming." [7]

Impact of climate change extend beyond humans. There is a forecast for extinctions of species because of their habitats being affected. An example of this is marine animals. There are major impacts on the marine systems as a result of anthropogenic metabolism, according to Blaustein, the dramatic findings indicate that "every square kilometer [is] affected by some anthropogenic driver of ecological change". [8]

The negative effects of anthropogenic metabolism are seen through the water footprint, ecological footprint, carbon cycle, and the nitrogen cycle. Studies on the marine ecosystem that show major impacts by humans and developed countries which include more industries, thus more anthropogenic metabolism.

See also

Related Research Articles

<span class="mw-page-title-main">Ecosystem</span> Community of living organisms together with the nonliving components of their environment

An ecosystem is a system that environments and their organisms form through their interaction. The biotic and abiotic components are linked together through nutrient cycles and energy flows.

<span class="mw-page-title-main">Nitrogen cycle</span> Biogeochemical cycle by which nitrogen is converted into various chemical forms

The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biological and physical processes. Important processes in the nitrogen cycle include fixation, ammonification, nitrification, and denitrification. The majority of Earth's atmosphere (78%) is atmospheric nitrogen, making it the largest source of nitrogen. However, atmospheric nitrogen has limited availability for biological use, leading to a scarcity of usable nitrogen in many types of ecosystems.

Industrial ecology (IE) is the study of material and energy flows through industrial systems. The global industrial economy can be modelled as a network of industrial processes that extract resources from the Earth and transform those resources into by-products, products and services which can be bought and sold to meet the needs of humanity. Industrial ecology seeks to quantify the material flows and document the industrial processes that make modern society function. Industrial ecologists are often concerned with the impacts that industrial activities have on the environment, with use of the planet's supply of natural resources, and with problems of waste disposal. Industrial ecology is a young but growing multidisciplinary field of research which combines aspects of engineering, economics, sociology, toxicology and the natural sciences.

<span class="mw-page-title-main">Biogeochemical cycle</span> Chemical transfer pathway between Earths biological and non-biological parts

A biogeochemical cycle, or more generally a cycle of matter, is the movement and transformation of chemical elements and compounds between living organisms, the atmosphere, and the Earth's crust. Major biogeochemical cycles include the carbon cycle, the nitrogen cycle and the water cycle. In each cycle, the chemical element or molecule is transformed and cycled by living organisms and through various geological forms and reservoirs, including the atmosphere, the soil and the oceans. It can be thought of as the pathway by which a chemical substance cycles the biotic compartment and the abiotic compartments of Earth. The biotic compartment is the biosphere and the abiotic compartments are the atmosphere, lithosphere and hydrosphere.

<span class="mw-page-title-main">Natural environment</span> Living and non-living things on Earth

The natural environment or natural world encompasses all biotic and abiotic things occurring naturally, meaning in this case not artificial. The term is most often applied to Earth or some parts of Earth. This environment encompasses the interaction of all living species, climate, weather and natural resources that affect human survival and economic activity. The concept of the natural environment can be distinguished as components:

This glossary of climate change is a list of definitions of terms and concepts relevant to climate change, global warming, and related topics.

<span class="mw-page-title-main">Carbon footprint</span> Concept to quantify greenhouse gas emissions from activities or products

A carbon footprint (or greenhouse gas footprint) is a calculated value or index that makes it possible to compare the total amount of greenhouse gases that an activity, product, company or country adds to the atmosphere. Carbon footprints are usually reported in tonnes of emissions (CO2-equivalent) per unit of comparison. Such units can be for example tonnes CO2-eq per year, per kilogram of protein for consumption, per kilometer travelled, per piece of clothing and so forth. A product's carbon footprint includes the emissions for the entire life cycle. These run from the production along the supply chain to its final consumption and disposal.

Material flow analysis (MFA), also referred to as substance flow analysis (SFA), is an analytical method to quantify flows and stocks of materials or substances in a well-defined system. MFA is an important tool to study the bio-physical aspects of human activity on different spatial and temporal scales. It is considered a core method of industrial ecology or anthropogenic, urban, social and industrial metabolism. MFA is used to study material, substance, or product flows across different industrial sectors or within ecosystems. MFA can also be applied to a single industrial installation, for example, for tracking nutrient flows through a waste water treatment plant. When combined with an assessment of the costs associated with material flows this business-oriented application of MFA is called material flow cost accounting. MFA is an important tool to study the circular economy and to devise material flow management. Since the 1990s, the number of publications related to material flow analysis has grown steadily. Peer-reviewed journals that publish MFA-related work include the Journal of Industrial Ecology, Ecological Economics, Environmental Science and Technology, and Resources, Conservation, and Recycling.

<span class="mw-page-title-main">Human impact on the nitrogen cycle</span>

Human impact on the nitrogen cycle is diverse. Agricultural and industrial nitrogen (N) inputs to the environment currently exceed inputs from natural N fixation. As a consequence of anthropogenic inputs, the global nitrogen cycle (Fig. 1) has been significantly altered over the past century. Global atmospheric nitrous oxide (N2O) mole fractions have increased from a pre-industrial value of ~270 nmol/mol to ~319 nmol/mol in 2005. Human activities account for over one-third of N2O emissions, most of which are due to the agricultural sector. This article is intended to give a brief review of the history of anthropogenic N inputs, and reported impacts of nitrogen inputs on selected terrestrial and aquatic ecosystems.

<span class="mw-page-title-main">Soil respiration</span> Chemical process produced by soil and the organisms within it

Soil respiration refers to the production of carbon dioxide when soil organisms respire. This includes respiration of plant roots, the rhizosphere, microbes and fauna.

Industrial metabolism is a concept to describe the material and energy turnover of industrial systems. It was proposed by Robert Ayres in analogy to the biological metabolism as "the whole integrated collection of physical processes that convert raw materials and energy, plus labour, into finished products and wastes..." In analogy to the biological concept of metabolism, which is used to describe the whole of chemical reactions in, for example, a cell to maintain its functions and reproduce itself, the concept of industrial metabolism describes the chemical reactions, transport processes, and manufacturing activities in industry.

This is a glossary of environmental science.

This page is an index of sustainability articles.

Urban metabolism (UM) is a model to facilitate the description and analysis of the flows of the materials and energy within cities, such as undertaken in a material flow analysis of a city. It provides researchers with a metaphorical framework to study the interactions of natural and human systems in specific regions. From the beginning, researchers have tweaked and altered the parameters of the urban metabolism model. C. Kennedy and fellow researchers have produced a clear definition in the 2007 paper The Changing Metabolism of Cities claiming that urban metabolism is "the sum total of the technical and socio-economic process that occur in cities, resulting in growth, production of energy and elimination of waste." With the growing concern of climate change and atmospheric degradation, the use of the urban metabolism model has become a key element in determining and maintaining levels of sustainability and health in cities around the world. Urban metabolism provides a unified or holistic viewpoint to encompass all of the activities of a city in a single model.

<span class="mw-page-title-main">Environmental impact of the energy industry</span>

The environmental impact of the energy industry is significant, as energy and natural resource consumption are closely related. Producing, transporting, or consuming energy all have an environmental impact. Energy has been harnessed by human beings for millennia. Initially it was with the use of fire for light, heat, cooking and for safety, and its use can be traced back at least 1.9 million years. In recent years there has been a trend towards the increased commercialization of various renewable energy sources. Scientific consensus on some of the main human activities that contribute to global warming are considered to be increasing concentrations of greenhouse gases, causing a warming effect, global changes to land surface, such as deforestation, for a warming effect, increasing concentrations of aerosols, mainly for a cooling effect.

At the global scale sustainability and environmental management involves managing the oceans, freshwater systems, land and atmosphere, according to sustainability principles.

<span class="mw-page-title-main">Green urbanism</span> Practice of creating communities beneficial to humans and the environment

Green urbanism has been defined as the practice of creating communities beneficial to humans and the environment. According to Timothy Beatley, it is an attempt to shape more sustainable places, communities and lifestyles, and consume less of the world's resources. Urban areas are able to lay the groundwork of how environmentally integrated and sustainable city planning can both provide and improve environmental benefits on the local, national, and international levels. Green urbanism is interdisciplinary, combining the collaboration of landscape architects, engineers, urban planners, ecologists, transport planners, physicists, psychologists, sociologists, economists and other specialists in addition to architects and urban designers.

<span class="mw-page-title-main">Social metabolism</span> Study of materials and energy flows between nature and society

Social metabolism or socioeconomic metabolism is the set of flows of materials and energy that occur between nature and society, between different societies, and within societies. These human-controlled material and energy flows are a basic feature of all societies but their magnitude and diversity largely depend on specific cultures, or sociometabolic regimes. Social or socioeconomic metabolism is also described as "the self-reproduction and evolution of the biophysical structures of human society. It comprises those biophysical transformation processes, distribution processes, and flows, which are controlled by humans for their purposes. The biophysical structures of society and socioeconomic metabolism together form the biophysical basis of society."

The Sustainable Process Index (SPI*) was developed in the 1990s at TU Graz by a team of scientists under the leadership of professor Michael Narodoslawsky. The SPI is a member of the ecological footprint family which aggregates and compares different ecological pressures. It allows to evaluate ecologic impacts of industrial products and services like energy production, industrial products, agriculture and buildings. It provides an encompassing evaluation that distinguishes sharply between fossil and renewable energy but taking other emissions to soil water and atmosphere into account as well. Based on the idea, that the primary income of the earth is Solar radiation, in accordance with the principle of Strong sustainability the surface of the earth is the basic dimension of the evaluation. The SPI is therefore in the same family of ecological measurement as the Ecological Footprint. These methods all measure the area that is necessary to support human activities. The SPI takes the whole life cycle into consideration starting from mining of raw materials to further transformation and production of goods to recycling to disposal of waste. This includes grey emissions, the emissions which originate from production and operation of infrastructures. The SPI method is based on the comparison of natural material fluxes with technological material fluxes. The conversion of mass and energy fluxes is strongly defined by two principles of Sustainability.

References

  1. Brunner Paul H. and Rechberger H. (2002) Anthropogenic Metabolism and Environmental Legacies Archived December 17, 2008, at the Wayback Machine in Encyclopedia of Global Environmental Change ( ISBN   0-471-97796-9)
  2. Müller, D.B., et al. 2013. Carbon emissions of infrastructure development. Environmental Science and Technology. 47(20) 11739-11746.
  3. Rosales, J. (2008). Economic Growth, Climate Change, Biodiversity Loss: Distributive Justice for the Global North and South. Conservation Biology, 22(6), 1409-1417.
  4. Allan, J. (2009). Virtual Water in the Real World. Conservation Biology, 23(5), 1331-1332.
  5. Dias de Oliveira, M. E., Vaughan, B. E., & Rykiel, E. (2005). Ethanol as Fuel: Energy, Carbon Dioxide Balances, and Ecological Footprint. Bioscience, 55(7), 593-602.
  6. Gruber, N. Galloway, J.N. (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451, 293-296.
  7. Peng, Y., Thomas, S. C., & Tian, D. (2008). Forest management and soil respiration: Implications for carbon sequestration. Environmental Reviews, 1693-111.
  8. Blaustein, R. (2008). Global Human Impacts. Bioscience, 58(4), 376.

Further reading