Design optimization

Last updated

Design optimization is an engineering design methodology using a mathematical formulation of a design problem to support selection of the optimal design among many alternatives. Design optimization involves the following stages: [1] [2]

Contents

  1. Variables: Describe the design alternatives
  2. Objective: Elected functional combination of variables (to be maximized or minimized)
  3. Constraints: Combination of Variables expressed as equalities or inequalities that must be satisfied for any acceptable design alternative
  4. Feasibility: Values for set of variables that satisfies all constraints and minimizes/maximizes Objective.

Design optimization problem

The formal mathematical (standard form) statement of the design optimization problem is [3]

where

The problem formulation stated above is a convention called the negative null form, since all constraint function are expressed as equalities and negative inequalities with zero on the right-hand side. This convention is used so that numerical algorithms developed to solve design optimization problems can assume a standard expression of the mathematical problem.

We can introduce the vector-valued functions

to rewrite the above statement in the compact expression

We call the set or system of (functional) constraints and the set constraint.

Application

Design optimization applies the methods of mathematical optimization to design problem formulations and it is sometimes used interchangeably with the term engineering optimization. When the objective function f is a vector rather than a scalar, the problem becomes a multi-objective optimization one. If the design optimization problem has more than one mathematical solutions the methods of global optimization are used to identified the global optimum.

Optimization Checklist [2]

A detailed and rigorous description of the stages and practical applications with examples can be found in the book Principles of Optimal Design.

Practical design optimization problems are typically solved numerically and many optimization software exist in academic and commercial forms. [4] There are several domain-specific applications of design optimization posing their own specific challenges in formulating and solving the resulting problems; these include, shape optimization, wing-shape optimization, topology optimization, architectural design optimization, power optimization. Several books, articles and journal publications are listed below for reference.

One modern application of design optimization is structural design optimization (SDO) is in building and construction sector. SDO emphasizes automating and optimizing structural designs and dimensions to satisfy a variety of performance objectives. These advancements aim to optimize the configuration and dimensions of structures to optimize augmenting strength, minimize material usage, reduce costs, enhance energy efficiency, improve sustainability, and optimize several other performance criteria. Concurrently, structural design automation endeavors to streamline the design process, mitigate human errors, and enhance productivity through computer-based tools and optimization algorithms. Prominent practices and technologies in this domain include the parametric design, generative design, building information modelling (BIM) technology, machine learning (ML), and artificial intelligence (AI), as well as integrating finite element analysis (FEA) with simulation tools. [5]

Journals

See also

Related Research Articles

<span class="mw-page-title-main">Mathematical optimization</span> Study of mathematical algorithms for optimization problems

Mathematical optimization or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.

In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints. It is named after the mathematician Joseph-Louis Lagrange.

<span class="mw-page-title-main">Optimal control</span> Mathematical way of attaining a desired output from a dynamic system

Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might be to reach the Moon with minimum fuel expenditure. Or the dynamical system could be a nation's economy, with the objective to minimize unemployment; the controls in this case could be fiscal and monetary policy. A dynamical system may also be introduced to embed operations research problems within the framework of optimal control theory.

An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints are linear.

<span class="mw-page-title-main">Loss function</span> Mathematical relation assigning a probability event to a cost

In mathematical optimization and decision theory, a loss function or cost function is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost" associated with the event. An optimization problem seeks to minimize a loss function. An objective function is either a loss function or its opposite, in which case it is to be maximized. The loss function could include terms from several levels of the hierarchy.

Multi-disciplinary design optimization (MDO) is a field of engineering that uses optimization methods to solve design problems incorporating a number of disciplines. It is also known as multidisciplinary system design optimization (MSDO), and multidisciplinary design analysis and optimization (MDAO).

In mathematics, nonlinear programming (NLP) is the process of solving an optimization problem where some of the constraints or the objective function are nonlinear. An optimization problem is one of calculation of the extrema of an objective function over a set of unknown real variables and conditional to the satisfaction of a system of equalities and inequalities, collectively termed constraints. It is the sub-field of mathematical optimization that deals with problems that are not linear.

Topology optimization is a mathematical method that optimizes material layout within a given design space, for a given set of loads, boundary conditions and constraints with the goal of maximizing the performance of the system. Topology optimization is different from shape optimization and sizing optimization in the sense that the design can attain any shape within the design space, instead of dealing with predefined configurations.

In mathematics, engineering, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions.

Shape optimization is part of the field of optimal control theory. The typical problem is to find the shape which is optimal in that it minimizes a certain cost functional while satisfying given constraints. In many cases, the functional being solved depends on the solution of a given partial differential equation defined on the variable domain.

<span class="mw-page-title-main">Interior-point method</span> Algorithms for solving convex optimization problems

Interior-point methods are algorithms for solving linear and non-linear convex optimization problems. IPMs combine two advantages of previously-known algorithms:

Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets. Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard. With recent advancements in computing and optimization algorithms, convex programming is nearly as straightforward as linear programming.

In mathematical optimization, the Karush–Kuhn–Tucker (KKT) conditions, also known as the Kuhn–Tucker conditions, are first derivative tests for a solution in nonlinear programming to be optimal, provided that some regularity conditions are satisfied.

In mathematical optimization theory, duality or the duality principle is the principle that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. If the primal is a minimization problem then the dual is a maximization problem. Any feasible solution to the primal (minimization) problem is at least as large as any feasible solution to the dual (maximization) problem. Therefore, the solution to the primal is an upper bound to the solution of the dual, and the solution of the dual is a lower bound to the solution of the primal. This fact is called weak duality.

In mathematical optimization and related fields, relaxation is a modeling strategy. A relaxation is an approximation of a difficult problem by a nearby problem that is easier to solve. A solution of the relaxed problem provides information about the original problem.

Multi-objective optimization or Pareto optimization is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective is a type of vector optimization that has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Minimizing cost while maximizing comfort while buying a car, and maximizing performance whilst minimizing fuel consumption and emission of pollutants of a vehicle are examples of multi-objective optimization problems involving two and three objectives, respectively. In practical problems, there can be more than three objectives.

Bilevel optimization is a special kind of optimization where one problem is embedded (nested) within another. The outer optimization task is commonly referred to as the upper-level optimization task, and the inner optimization task is commonly referred to as the lower-level optimization task. These problems involve two kinds of variables, referred to as the upper-level variables and the lower-level variables.

In mathematical optimization, Wolfe duality, named after Philip Wolfe, is type of dual problem in which the objective function and constraints are all differentiable functions. Using this concept a lower bound for a minimization problem can be found because of the weak duality principle.

Lexicographic max-min optimization is a kind of multi-objective optimization. In general, multi-objective optimization deals with optimization problems with two or more objective functions to be optimized simultaneously. Lexmaxmin optimization presumes that the decision-maker would like the smallest objective value to be as high as possible; subject to this, the second-smallest objective should be as high as possible; and so on. In other words, the decision-maker ranks the possible solutions according to a leximin order of their objective function values.

The Method of Moving Asymptotes (MMA) is an optimization algorithm developed by Krister Svanberg in the 1980s. It's primarily used for solving non-linear programming problems, particularly those related to structural design and topology optimization.

References

  1. Martins, Joaquim R. R. A.; Ning, Andrew (2021-10-01). Engineering Design Optimization (PDF). Cambridge University Press. ISBN   978-1108833417.
  2. 1 2 Papalambros, Panos Y.; Wilde, Douglass J. (2017-01-31). Principles of Optimal Design: Modeling and Computation. Cambridge University Press. ISBN   9781316867457.
  3. Boyd, Stephen; Boyd, Stephen P.; California), Stephen (Stanford University Boyd; Vandenberghe, Lieven; Angeles), Lieven (University of California Vandenberghe, Los (2004-03-08). Convex Optimization (PDF). Cambridge University Press. ISBN   9780521833783.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. Messac, Achille (2015-03-19). Optimization in Practice with MATLAB®: For Engineering Students and Professionals. Cambridge University Press. ISBN   9781316381373.
  5. Towards BIM-Based Sustainable Structural Design Optimization: A Systematic Review and Industry Perspective. Sustainability 2023, 15, 15117. https://doi.org/10.3390/su152015117

Further reading

Structural Topology Optimization