Human-centered design

Last updated

Human-centered design (HCD, also human-centered design, as used in ISO standards) is an approach to problem-solving commonly used in process, product, service and system design, management, and engineering frameworks that develops solutions to problems by involving the human perspective in all steps of the problem-solving process. Human involvement typically takes place in initially observing the problem within context, brainstorming, conceptualizing, developing concepts and implementing the solution.

Contents

Human-centered design is an approach to interactive systems development that aims to make systems usable and useful by focusing on the users, their needs and requirements, and by applying human factors/ergonomics, and usability knowledge and techniques. This approach enhances effectiveness and efficiency, improves human well-being, user satisfaction, accessibility and sustainability; and counteracts possible adverse effects of use on human health, safety and performance.

ISO 9241-210:2019(E)

Human-centered design builds upon participatory action research by moving beyond participants' involvement and producing solutions to problems rather than solely documenting them. Initial stages usually revolve around immersion, observing, and contextual framing— in which innovators immerse themselves in the problem and community. Subsequent stages may then focus on community brainstorming, modeling and prototyping and implementation in community spaces. [1]

Development

Human-centered design has its origins at the intersection of numerous fields including engineering, psychology, anthropology and the arts. As an approach to creative problem-solving in technical and business fields its origins are often traced to the founding of the Stanford University design program in 1958 by Professor John E. Arnold who first proposed the idea that engineering design should be human-centered. This work coincided with the rise of creativity techniques and the subsequent design methods movement in the 1960s. Since then, as creative design processes and methods have been increasingly popularized for business purposes, the standardized and defined human-centered design is mistakenly equated with the vaguely outlined "design thinking".

In Architect or Bee?, Mike Cooley coined the term "human-centered systems" in the context of the transition in his profession from traditional drafting at a drawing board to computer-aided design. [2] Human-centered systems, [3] as used in economics, computing and design, aim to preserve or enhance human skills, in both manual and office work, in environments in which technology tends to undermine the skills that people use in their work. [4] [5] [6]

Human centeredness asserts firstly, that we must always put people before machines, however complex or elegant that machine might be, and, secondly, it marvels and delights at the ability and ingenuity of human beings. The Human Centered Systems movement looks sensitively at these forms of science and technology which meet our cultural, historical and societal requirements, and seeks to develop more appropriate forms of technology to meet our long-term aspirations. In the Human Centered System, there exists a symbiotic relation between the human and the machine, in which the human being would handle the qualitative subjective judgements and the machine the quantitative elements. It involves a radical redesign of the interface technologies and at a philosophical level, the objective is to provide tools (in the Heidegger sense) which would support human skill and ingenuity rather than machines which would objectivise that knowledge

Mike Cooley, "On Human-Machine Symbiosis", 2008 [7]

User participation

Wikimania Human Centered Design Visualization Wikimania Human Centered Design Visualization.jpg
Wikimania Human Centered Design Visualization

The user-oriented framework relies heavily on user participation and user feedback in the planning process. [8] Users are able to provide new perspective and ideas, which can be considered in a new round of improvements and changes. [8] It is said that increased user participation in the design process can garner a more comprehensive understanding of the design issues, due to more contextual and emotional transparency between researcher and participant. [8] A key element of human centered design is applied ethnography, which is a research method adopted from cultural anthropology. [8] This research method requires researchers to be fully immersed in the observation so that implicit details are also recorded. [8]

Rationale for adoption

Even after decades of thought on Human Centered Design, management and finance systems still believe that "another's liability is one's asset" could be true of porous human bodies, embedded in nature and inseparable from each other. On the contrary, our biological and ecological interconnections ensure that "another's liability is our liability". Sustainable business systems can only emerge if these biological and ecological interconnections are accepted and accounted for.

Using a human-centered approach to design and development has substantial economic and social benefits for users, employers and suppliers. Highly usable systems and products tend to be more successful both technically and commercially. In some areas, such as consumer products, purchasers will pay a premium for well-designed products and systems. Support and help-desk costs are reduced when users can understand and use products without additional assistance. In most countries, employers and suppliers have legal obligations to protect users from risks to their health, and safety and human-centered methods can reduce these risks (e.g. musculoskeletal risks). Systems designed using human-centered methods improve quality, for example, by:

Human-centered design may be utilized in multiple fields, including sociological sciences and technology. It has been noted for its ability to consider human dignity, access, and ability roles when developing solutions. [9] Because of this, human-centered design may more fully incorporate culturally sound, human-informed, and appropriate solutions to problems in a variety of fields rather than solely product and technology-based fields. Because human-centered design focuses on the human experience, researchers and designers can address "issues of social justice and inclusion and encourage ethical, reflexive design." [10]

Human-centered design arises from underlying principles of human factors. When it comes to those two concepts, they are quite interconnected; human factors are about discovering the attributes of human cognition and behavior that are important for making technology work for people. [11] It is what allows humans as a species to innovate over time.[ dubious discuss ] Human-centered design was used to discover that Blackberries have less human usability than an iPhone and that important controls on a panel that look too similar will be easily confused and may cause an increased risk of human error.

An important distinction between human-centered design and any other form of design is that human-centered design is not just about aesthetics, and is not always designing for interfaces. It could be designing for controls in the world, tasks in the world, hardware, decision-making, or cognition. [11] For instance, if a nurse is too tired from a long shift, they might confuse the pumps through which might be administered a bag of penicillin to a patient. In this case, the human-centered design would encompass a task redesign, a possible institute policy redesign, and an equipment redesign.

Typically, human-centered design is more focused on "methodologies and techniques for interacting with people in such a manner as to facilitate the detection of meanings, desires and needs, either by verbal or non-verbal means." [12] In contrast, user-centered design is another approach and framework of processes which considers the human role in product use, but focuses largely on the production of interactive technology designed around the user's physical attributes rather than social problem-solving. [13]

Human-centered design approach in Health

In the context of health-seeking behaviors, Human Centered Design can be used to understand why people do or do not seek out health services, even when those services are available and affordable. Human centered design is a powerful tool for improving health-seeking behaviors. This understanding can then be used to develop interventions to address the barriers and promote desired behaviors. Demand-related challenges associated with the acceptability, responsiveness, and quality of services can be addressed by working directly with users to understand their needs and perspectives. [14] HCD can help in designing interventions that are more likely to be effective.

Critiques

Human-centered design has been both lauded and criticised for its ability to actively solve problems with affected communities. Criticisms include the inability of human-centered design to push the boundaries of available technology by solely tailoring to the demands of present-day solutions, rather than focus on possible future solutions. [15] In addition, human-centered design often considers context, but does not offer tailored approaches for very specific groups of people. New research on innovative approaches include youth-centered health design, which focuses on youth as the central aspect with particular needs and limitations not always addressed by human-centered design approaches. [16] Nevertheless, human-centered design that doesn't reflect very specific groups of users and their needs is human-centered design poorly executed, since the principles of human-system interaction require the reflection of those specified needs.

Whilst users are very important for some types of innovation (namely incremental innovation), focusing too much on the user may result in producing an outdated or no longer necessary product or service. This is because the insights that you achieve from studying the user today are insights that are related to the users of today and the environment she or he lives in today. If your solution will be available only two or three years from now, your user may have developed new preferences, wants and needs by then. [17]

Modern Advances in Human-Centered Design

Human-Centered Design with Artificial Intelligence

Human-Centered AI (HCAI) is a methodical approach to AI system design that prioritizes human values and requirements. [18] This method places a strong emphasis on boosting human self-efficacy, encouraging innovation, guaranteeing accountability, and promoting social interaction. By putting these human goals first, HCAI also tackles important concerns like privacy, security, environmental preservation, social justice, and human rights. This represents a dramatic change from an algorithmic approach to a human-centered system design, which has been compared to a second Copernican Revolution.

HCAI introduces a two-dimensional framework that demonstrates the possibility of combining high levels of human control with high levels of automation. [18] This framework suggests a move away from viewing AI as autonomous teammates, instead positioning AI as powerful tools and tele-operated devices that empower users.

Furthermore, HCAI proposes a three-level governance structure to enhance the reliability and trustworthiness of AI systems. At the first level, software engineering teams are encouraged to develop robust and dependable systems. At the second level, managers are urged to cultivate a safety culture across their organizations. At the third level, industry-wide certification can help establish standards that promote trustworthy HCAI systems.

These concepts are designed to be dynamic, inviting challenge, refinement, and extension to accommodate new technologies. They aim to reframe design discussions for AI products and services, offering an opportunity to restart and reshape these conversations. The ultimate goal is to deliver greater benefits to individuals, families, communities, businesses, and society, ensuring that AI developments align with human values and societal goals

Integration of Human-Centered Design and Community Based Participatory Research

By joining two people-centered approaches, Human-Centered Design (HCD) and Community-Based Participatory Research (CBPR) offer a fresh way to tackle challenging real-world issues. While CBPR has been used in academic and community partnerships to address health inequities through social action and empowerment, HCD has historically been used in the business sector to guide the creation of products and services. [19] Although the public sector has just started using HCD concepts to inform public policy, more research is still needed to fully understand its cycle and how it might be strategically applied to health promotion. By combining CBPR's emphasis on community trust and collaboration with HCD's emphasis on user-centric design, this integration provides a complimentary approach. The potential of these approaches to improve public health outcomes is demonstrated by CBPR initiatives, such as those that try to lower the spread of STIs and improve handwashing among farmworkers. The combined strategy can result in more lasting and successful health interventions by addressing pertinent concerns, establishing partnerships, and involving community members.

Human-Centered Design in SEIPS 3.0

In order to improve quality and safety in healthcare, Human Factors and Ergonomics (HFE) are integrated using the Systems Engineering Initiative for Patient Safety (SEIPS) models. These models are based on a human-centered design approach, which gives patients' and healthcare practitioners' wants and experiences top priority when designing systems. By extending the "process" component to handle the intricacies of contemporary healthcare delivery, SEIPS 3.0 builds upon this. [20]

The idea of the patient journey is introduced by the SEIPS 3.0 model as healthcare becomes more dispersed across different locations and eras. This journey-centric approach emphasizes a comprehensive view of patients' experiences over time by mapping their contacts with various care venues. By emphasizing the patient journey, SEIPS 3.0 emphasizes how crucial it is to create systems that can adapt to patients' changing demands in order to provide seamless, secure, and encouraging care. [20]

In order to implement human-centered design in SEIPS 3.0, HFE professionals must take into account a variety of viewpoints and encourage sincere involvement from all parties involved, including patients, caregivers, and medical professionals. In order to increase interactions across various healthcare settings and capture the intricacies of patient experiences, this approach calls for creative techniques. By putting people first, SEIPS 3.0 seeks to develop healthcare systems that improve the general happiness and well-being of both patients and caregivers in addition to preventing harm

See also

Related Research Articles

Usability engineering is a professional discipline that focuses on improving the usability of interactive systems. It draws on theories from computer science and psychology to define problems that occur during the use of such a system. Usability Engineering involves the testing of designs at various stages of the development process, with users or with usability experts. The history of usability engineering in this context dates back to the 1980s. In 1988, authors John Whiteside and John Bennett—of Digital Equipment Corporation and IBM, respectively—published material on the subject, isolating the early setting of goals, iterative evaluation, and prototyping as key activities. The usability expert Jakob Nielsen is a leader in the field of usability engineering. In his 1993 book Usability Engineering, Nielsen describes methods to use throughout a product development process—so designers can ensure they take into account the most important barriers to learnability, efficiency, memorability, error-free use, and subjective satisfaction before implementing the product. Nielsen’s work describes how to perform usability tests and how to use usability heuristics in the usability engineering lifecycle. Ensuring good usability via this process prevents problems in product adoption after release. Rather than focusing on finding solutions for usability problems—which is the focus of a UX or interaction designer—a usability engineer mainly concentrates on the research phase. In this sense, it is not strictly a design role, and many usability engineers have a background in computer science because of this. Despite this point, its connection to the design trade is absolutely crucial, not least as it delivers the framework by which designers can work so as to be sure that their products will connect properly with their target usership.

<span class="mw-page-title-main">Usability</span> Capacity of a system for its users to perform tasks

Usability can be described as the capacity of a system to provide a condition for its users to perform the tasks safely, effectively, and efficiently while enjoying the experience. In software engineering, usability is the degree to which a software can be used by specified consumers to achieve quantified objectives with effectiveness, efficiency, and satisfaction in a quantified context of use.

ISO 9241 is a multi-part standard from the International Organization for Standardization (ISO) covering ergonomics of human-system interaction and related, human-centered design processes. It is managed by the ISO Technical Committee 159. It was originally titled Ergonomic requirements for office work with visual display terminals (VDTs). From 2006 onwards, the standards were retitled to the more generic Ergonomics of Human System Interaction.

Interaction design, often abbreviated as IxD, is "the practice of designing interactive digital products, environments, systems, and services." While interaction design has an interest in form, its main area of focus rests on behavior. Rather than analyzing how things are, interaction design synthesizes and imagines things as they could be. This element of interaction design is what characterizes IxD as a design field, as opposed to a science or engineering field.

The following outline is provided as an overview of and topical guide to human–computer interaction:

Participatory design is an approach to design attempting to actively involve all stakeholders in the design process to help ensure the result meets their needs and is usable. Participatory design is an approach which is focused on processes and procedures of design and is not a design style. The term is used in a variety of fields e.g. software design, urban design, architecture, landscape architecture, product design, sustainability, graphic design, industrial design, planning, and health services development as a way of creating environments that are more responsive and appropriate to their inhabitants' and users' cultural, emotional, spiritual and practical needs. It is also one approach to placemaking.

User experience (UX) is how a user interacts with and experiences a product, system or service. It includes a person's perceptions of utility, ease of use, and efficiency. Improving user experience is important to most companies, designers, and creators when creating and refining products because negative user experience can diminish the use of the product and, therefore, any desired positive impacts. Conversely, designing toward profitability as a main objective often conflicts with ethical user experience objectives and even causes harm. User experience is subjective. However, the attributes that make up the user experience are objective.

Human-centered computing (HCC) studies the design, development, and deployment of mixed-initiative human-computer systems. It is emerged from the convergence of multiple disciplines that are concerned both with understanding human beings and with the design of computational artifacts. Human-centered computing is closely related to human-computer interaction and information science. Human-centered computing is usually concerned with systems and practices of technology use while human-computer interaction is more focused on ergonomics and the usability of computing artifacts and information science is focused on practices surrounding the collection, manipulation, and use of information.

Service design is the activity of planning and arranging people, infrastructure, communication and material components of a service in order to improve its quality, and the interaction between the service provider and its users. Service design may function as a way to inform changes to an existing service or create a new service entirely.

Cognitive ergonomics is a scientific discipline that studies, evaluates, and designs tasks, jobs, products, environments and systems and how they interact with humans and their cognitive abilities. It is defined by the International Ergonomics Association as "concerned with mental processes, such as perception, memory, reasoning, and motor response, as they affect interactions among humans and other elements of a system. Cognitive ergonomics is responsible for how work is done in the mind, meaning, the quality of work is dependent on the persons understanding of situations. Situations could include the goals, means, and constraints of work. The relevant topics include mental workload, decision-making, skilled performance, human-computer interaction, human reliability, work stress and training as these may relate to human-system design." Cognitive ergonomics studies cognition in work and operational settings, in order to optimize human well-being and system performance. It is a subset of the larger field of human factors and ergonomics.

Design thinking refers to the set of cognitive, strategic and practical procedures used by designers in the process of designing, and to the body of knowledge that has been developed about how people reason when engaging with design problems.

Affective design describes the design of products, services, and user interfaces that aim to evoke intended emotional responses from consumers, ultimately improving customer satisfaction. It is often regarded within the domain of technology interaction and computing, in which emotional information is communicated to the computer from the user in a natural and comfortable way. The computer processes the emotional information and adapts or responds to try to improve the interaction in some way. The notion of affective design emerged from the field of human–computer interaction (HCI), specifically from the developing area of affective computing. Affective design serves an important role in user experience (UX) as it contributes to the improvement of the user's personal condition in relation to the computing system. Decision-making, brand loyalty, and consumer connections have all been associated with the integration of affective design. The goals of affective design focus on providing users with an optimal, proactive experience. Amongst overlap with several fields, applications of affective design include ambient intelligence, human–robot interaction, and video games.

Tools, devices or software must be evaluated before their release on the market from different points of view such as their technical properties or their usability. Usability evaluation allows assessing whether the product under evaluation is efficient enough, effective enough and sufficiently satisfactory for the users. For this assessment to be objective, there is a need for measurable goals that the system must achieve. That kind of goal is called a usability goal. They are objective criteria against which the results of the usability evaluation are compared to assess the usability of the product under evaluation.

<span class="mw-page-title-main">Ergonomics</span> Designing introductions to suit users performance

Ergonomics, also known as human factors or human factors engineering (HFE), is the application of psychological and physiological principles to the engineering and design of products, processes, and systems. Primary goals of human factors engineering are to reduce human error, increase productivity and system availability, and enhance safety, health and comfort with a specific focus on the interaction between the human and equipment.

Pharmacocybernetics is an upcoming field that describes the science of supporting drugs and medications use through the application and evaluation of informatics and internet technologies, so as to improve the pharmaceutical care of patients. It is an interdisciplinary field that integrates the domains of medicine and pharmacy, computer sciences and psychological sciences to design, develop, apply and evaluate technological innovations which improve drugs and medications management, as well as prevent or solve drug-related problems.

<span class="mw-page-title-main">Hardware interface design</span>

Hardware interface design (HID) is a cross-disciplinary design field that shapes the physical connection between people and technology in order to create new hardware interfaces that transform purely digital processes into analog methods of interaction. It employs a combination of filmmaking tools, software prototyping, and electronics breadboarding.

<span class="mw-page-title-main">Behavioural design</span> Field of design concerned with the influence of design on behavior

Behavioural design is a sub-category of design, which is concerned with how design can shape, or be used to influence human behaviour. All approaches of design for behaviour change acknowledge that artifacts have an important influence on human behaviour and/or behavioural decisions. They strongly draw on theories of behavioural change, including the division into personal, behavioural, and environmental characteristics as drivers for behaviour change. Areas in which design for behaviour change has been most commonly applied include health and wellbeing, sustainability, safety and social context, as well as crime prevention.

<span class="mw-page-title-main">Extreme users</span> Design concept

Extreme Characters is a methodology used within user-centered design in order to represent edge case users of a product, brand or user interface. Extreme Characters also fits under the umbrella of market segmentation within marketing as it formulates design solutions for both average users and extreme, brink users. The concept of creating extreme users has been adopted heavily into the concept user-centered design and human-centered computing, and has led to its wide adoption both within online and offline applications, along with its placement within marketing communications.

<span class="mw-page-title-main">Merative</span> U.S. healthcare company

Merative L.P., formerly IBM Watson Health, is an American medical technology company that provides products and services that help clients facilitate medical research, clinical research, real world evidence, and healthcare services, through the use of artificial intelligence, data analytics, cloud computing, and other advanced information technology. Merative is owned by Francisco Partners, an American private equity firm headquartered in San Francisco, California. In 2022, IBM divested and spun-off their Watson Health division into Merative. As of 2023, it remains a standalone company headquartered in Ann Arbor with innovation centers in Ireland, Hyderabad, Bengaluru, and Chennai.

Design justice is the ethical and inclusive approach to designing products or systems that address and mitigate historical inequalities to ensure fair and equitable outcomes for all users. The article covers an overview of design justice, the 10 Principles of Design Justice, challenges in equitable design, and applications of design justice in Artificial Intelligence and Human-Computer Interaction.

References

  1. Innovating for people: the Handbook of human-centered design methods. Pittsburgh, PA: LUMA Institute. 2012.
  2. Cooley, Mike (1982). Architect or Bee?. South End Press.
  3. Cooley, Mike (1989). "Human-centred Systems". Designing Human-centred Technology. The Springer Series on Artificial Intelligence and Society. pp. 133–143. doi:10.1007/978-1-4471-1717-9_10. ISBN   978-3-540-19567-2.
  4. John Bellamy Foster; Harry Braverman (1998). Labor and Monopoly Capital: The Degradation of Work in the 20th Century. Monthly Review Press.
  5. Philip Kraft (1977). Programmers and Managers: The Routinization of Computer Programmers in the United States.
  6. Mike Cooley (1989). "Designing Human-centered Technology: A Cross-disciplinary Project in Computer-aided Manufacturing". In Howard Rosenbrock (ed.). Human-centered systems. London: Springer-Verlag. ISBN   978-3-540-19567-2.
  7. Cooley, M. (2008). "On Human-Machine Symbiosis". In Gill, S. (ed.). Cognition, Communication and Interaction. Human-Computer Interaction Series. London: Springer. pp. 457–485. ISBN   978-1-84628-926-2.
  8. 1 2 3 4 5 Del'Era, Claudio; Landoni, Paolo (June 2014). "Living Lab: A Methodology between User Centered Design and Participatory Design". Creativity and Innovation Management. 23 (2): 137–154. doi:10.1111/caim.12061. hdl: 11311/959178 . S2CID   153640858.[ permanent dead link ]
  9. Buchanan, R. (2001). "Human dignity and human rights: Thoughts on the principles of human-centered design". Design Issues. 17 (3): 35–39.
  10. Jones, Natasha N. (2016). "Narrative Inquiry in Human-Centered Design: Examining Silence and Voice to Promote Social Justice in Design Scenarios". Journal of Technical Writing and Communication. 46 (4). Sage: 471–492. doi:10.1177/0047281616653489. S2CID   147708023.
  11. 1 2 Lee, John D.; Wickens, Christopher D.; Liu, Yili; Boyle, Linda Ng (2017). Designing for People: An introduction to human factors engineering. CreateSpace Independent Publishing Platform. ISBN   978-1539808008.
  12. Giacomin, J. (2014). "What Is Human Centered Design?". The Design Journal. 17 (4): 606–623.
  13. Abras, C.; Maloney-Krichmar, D.; Preece, J. (2004). Bainbridge, W. (ed.). "User-centered design". Encyclopedia of Human-Computer Interaction. Vol. 37, no. 4. Thousand Oaks: Sage Publications. pp. 445–456.
  14. "HCD for Health Homepage". UNICEF Human Centered Design 4 Health. Archived from the original on November 20, 2023. Retrieved October 16, 2023 via www.hcd4health.org.
  15. Norman, Donald A. (2005). "Human-Centered Design Considered Harmful". Interactions (essay). 12 (4). CACM: 14–19. Archived from the original on January 18, 2007. Retrieved April 15, 2017 via www.jnd.org.
  16. "Trauma-Informed Youth-Centered Health Design". YTH – youth + tech + health. Retrieved November 20, 2023.
  17. "6 Building Blocks for Successful Innovation". 6 Building Blocks for Successful Innovation. Archived from the original on January 2, 2020. Retrieved January 2, 2020.
  18. 1 2 Shneiderman, Ben (September 30, 2020). "Human-Centered Artificial Intelligence: Three Fresh Ideas". AIS Transactions on Human-Computer Interaction. 12 (3): 109–124. doi: 10.17705/1thci.00131 . ISSN   1944-3900.
  19. Carayon, Pascale; Wooldridge, Abigail; Hoonakker, Peter; Hundt, Ann Schoofs; Kelly, Michelle M. (April 2020). "SEIPS 3.0: Human-centered design of the patient journey for patient safety". Applied Ergonomics. 84: 103033. doi:10.1016/j.apergo.2019.103033. PMC   7152782 .
  20. 1 2 Carayon, Pascale; Wooldridge, Abigail; Hoonakker, Peter; Hundt, Ann Schoofs; Kelly, Michelle M. (April 1, 2020). "SEIPS 3.0: Human-centered design of the patient journey for patient safety". Applied Ergonomics. 84: 103033. doi:10.1016/j.apergo.2019.103033. ISSN   0003-6870. PMC   7152782 . PMID   31987516.

International Standards