Rework (electronics)

Last updated
Electronic assembly (PCBA) PCBA-1.jpg
Electronic assembly (PCBA)

Rework (or re-work) is the term for the refinishing operation or repair of an electronic printed circuit board (PCB) assembly, usually involving desoldering and re-soldering of surface-mounted electronic components (SMD). Mass processing techniques are not applicable to single device repair or replacement, and specialized manual techniques by expert personnel using appropriate equipment are required to replace defective components; area array packages such as ball grid array (BGA) devices particularly require expertise and appropriate tools. A hot air gun or hot air station is used to heat devices and melt solder, and specialised tools are used to pick up and position often tiny components.

Printed circuit board board to support and connect electronic components

A printed circuit board (PCB) mechanically supports and electrically connects electronic components or electrical components using conductive tracks, pads and other features etched from one or more sheet layers of copper laminated onto and/or between sheet layers of a non-conductive substrate. Components are generally soldered onto the PCB to both electrically connect and mechanically fasten them to it.


In electronics, desoldering is the removal of solder and components from a circuit board for troubleshooting, repair, replacement, and salvage.

Soldering process of joining metal pieces with heated filler metal

Soldering is a process in which two or more items are joined together by melting and putting a filler metal (solder) into the joint, the filler metal having a lower melting point than the adjoining metal. Unlike welding, soldering does not involve melting the work pieces. In brazing, the work piece metal also does not melt, but the filler metal is one that melts at a higher temperature than in soldering. In the past, nearly all solders contained lead, but environmental and health concerns have increasingly dictated use of lead-free alloys for electronics and plumbing purposes.


A rework station is a place to do this work—the tools and supplies for this work, typically on a workbench.


A workbench is a sturdy table at which manual work is done. They range from simple flat surfaces to very complex designs that may be considered tools in themselves. Workbenches vary in size from tiny jewelers benches to the huge benches used by staircase makers. Almost all workbenches are rectangular in shape, often using the surface, corners and edges as flat/square and dimension standards. Design is as varied as type of work for which the benches are used but most share these attributes:

Reasons for rework

X-ray picture of inadequate solder joints Xcsp-2.jpg
X-ray picture of inadequate solder joints

Rework is practiced in many kinds of manufacturing when defective products are found. [1]

For electronics, defects may include:


Thermal profile of a lead free solder process Prof-1.jpg
Thermal profile of a lead free solder process

The rework may involve several components, which must be worked on one by one without damage to surrounding parts or the PCB itself. All parts not being worked on are protected from heat and damage. Thermal stress on the electronic assembly is kept as low as possible to prevent unnecessary contractions of the board which might cause immediate or future damage.

In the 21st century, almost all soldering is carried out with lead-free solder, both on manufactured assemblies and in rework, to avoid the health and environmental hazards of lead. Where this precaution is not necessary, tin-lead solder melts at a lower temperature and is easier to work with.

Lead poisoning Poisoning by lead in the body, especially affects the brain

Lead poisoning is a type of metal poisoning caused by lead in the body. The brain is the most sensitive. Symptoms may include abdominal pain, constipation, headaches, irritability, memory problems, inability to have children, and tingling in the hands and feet. It causes almost 10% of intellectual disability of otherwise unknown cause and can result in behavioral problems. Some of the effects are permanent. In severe cases anemia, seizures, coma, or death may occur.

Dispensed solder paste on the pads of a QFPs Disp-1.jpg
Dispensed solder paste on the pads of a QFPs
Mask and spheres for reballing Mask-1.JPG
Mask and spheres for reballing

Heating a single SMD with a hot-air gun to melt all solder joints between it and the PCB is usually the first step, followed by removing the SMD while the solder is molten. The pad array on the conductor board should then be cleaned of old solder. It is quite easy to remove these residues by heating them to melting temperature. A soldering iron or hot air gun can be used with desoldering braid.

The precise placement of the new unit onto the prepared pad array requires skillful use of a highly accurate vision-alignment system with high resolution and magnification. The smaller the pitch and size of the components, the more precise working must be.

Finally the newly placed SMD is soldered onto the board. Reliable solder joints are facilitated by use of a solder profile which preheats the board, heats all the connections between the unit and the PCB to the melting temperature of the solder used, then properly cools them.

High quality demands or specific designs of SMDs require the precise application of solder paste before positioning and soldering the unit. The surface tension of the molten solder, which is on the board's solder pads, tends to pull the device into precise alignment with the pads if not initially positioned totally correctly.

Reflowing and reballing

X-ray picture of good solder joints. Xcsp-1.jpg
X-ray picture of good solder joints.
Good solder joints between BGA and PCB Bga-1.jpg
Good solder joints between BGA and PCB

Ball grid arrays (BGA) and chip scale packages (CSA) present special difficulties for testing and rework, as they have many small, closely spaced pads on their underside which are connected to matching pads on the PCB. Connecting pins are not accessible from the top for testing, and cannot be desoldered without heating the whole device to the melting point of solder.

Ball grid array

A ball grid array (BGA) is a type of surface-mount packaging used for integrated circuits. BGA packages are used to permanently mount devices such as microprocessors. A BGA can provide more interconnection pins than can be put on a dual in-line or flat package. The whole bottom surface of the device can be used, instead of just the perimeter. The traces connecting the package's leads to the wires or balls which connect the die to package are also on average shorter than with a perimeter-only type, leading to better performance at high speeds.

After fabrication of the BGA package, tiny balls of solder are glued to the pads on its underside; during assembly the balled package is placed on the PCB and heated to melt the solder and, all being well, to connect each pad on the device to its mate on the PCB without any extraneous solder bridging between adjacent pads. Bad connections produced during assembly can be detected and the assembly reworked (or scrapped). Imperfect connections of devices which are not themselves faulty, which work for a time and then fail, often triggered by thermal expansion and contraction at operating temperature, are not infrequent.

Assemblies which fail because of bad BGA connections can be repaired either by reflowing, or by removing the device and cleaning it of solder, reballing, and replacing. Devices can be recovered from scrapped assemblies for reuse in the same way.

Reflowing as a rework technique, similar to the manufacturing process of reflow soldering, involves dismantling the equipment to remove the faulty circuit board, pre-heating the whole board in an oven, heating the non-functioning component further to melt the solder, then cooling, following a carefully determined thermal profile, and reassembling, a process which is hoped will repair the bad connection without the need to remove and replace the component. This may or not resolve the problem; and there is a chance that the reflowed board will fail again after some time. For typical devices (PlayStation 3 and Xbox 360) one repair company estimates that the process, if there are no unexpected problems, takes about 80 minutes. [2] On a forum where professional repair people discuss reflowing of laptop computer graphics chips, different contributors cite success rates (no failure within 6 months) of between 60 and 90% for reflowing with professional equipment and techniques, in equipment whose value does not justify complete reballing. [3] Reflowing can done non-professionally in a domestic oven [4] or with a heat gun. [5] [6] While such methods can cure some problems, the outcome is likely to be less successful than is possible with accurate thermal profiling achieved by an experienced technician using professional equipment.

Reballing involves dismantling, heating the chip until it can be removed from the board, typically with a hot-air gun and vacuum pickup tool, removing the device, removing solder remaining on the device and board, putting new solder balls in place, replacing the original device if there was a poor connection, or using a new one, and heating the device or board to solder it in place. The new balls can be placed via several methods, including:

For the PS3 and Xbox mentioned above, the time is about 120 minutes if all goes well. [2]

Chips are at risk of being damaged by the repeated heating and cooling of reballing, and manufacturers' warranties sometimes do not cover this case. Removing solder with solder wick subjects devices to thermal stress fewer times than using a flowing solder bath. In a test twenty devices were reballed, some several times. Two failed to function, but were restored to full functionality after reballing again. One was subjected to 17 thermal cycles without failing.


Properly carried out rework restores the functionality of the reworked assembly, and its subsequent lifetime should not significantly be affected. Consequently, where the cost of reworking is less than the value of the assembly, it is widely used in all sectors of the electronic industry. Manufacturer and service providers of communications-technologies, entertainment- and consumer-devices, industrial commodities, automobiles, medical technology, aerospace and other high power electronics rework when necessary.

See also

Related Research Articles

Surface-mount technology method for producing electronic circuits

Surface-mount technology (SMT) is a method for producing electronic circuits in which the components are mounted or placed directly onto the surface of printed circuit boards (PCBs). An electronic device so made is called a surface-mount device (SMD). In industry, it has largely replaced the through-hole technology construction method of fitting components with wire leads into holes in the circuit board. Both technologies can be used on the same board, with the through-hole technology used for components not suitable for surface mounting such as large transformers and heat-sinked power semiconductors.

Flip chip, also known as controlled collapse chip connection or its abbreviation, C4, is a method for interconnecting semiconductor devices, such as IC chips and microelectromechanical systems (MEMS), to external circuitry with solder bumps that have been deposited onto the chip pads. The technique was developed by General Electric's Light Military Electronics Dept., Utica, N.Y. The solder bumps are deposited on the chip pads on the top side of the wafer during the final wafer processing step. In order to mount the chip to external circuitry, it is flipped over so that its top side faces down, and aligned so that its pads align with matching pads on the external circuit, and then the solder is reflowed to complete the interconnect. This is in contrast to wire bonding, in which the chip is mounted upright and wires are used to interconnect the chip pads to external circuitry.

A reflow oven is a machine used primarily for reflow soldering of surface mount electronic components to printed circuit boards (PCB).

Wave soldering

Wave soldering is a bulk soldering process used in the manufacture of printed circuit boards. The circuit board is passed over a pan of molten solder in which a pump produces an upwelling of solder that looks like a standing wave. As the circuit board makes contact with this wave, the components become soldered to the board. Wave soldering is used for both through-hole printed circuit assemblies, and surface mount. In the latter case, the components are glued onto the surface of a printed circuit board (PCB) by placement equipment, before being run through the molten solder wave. Wave soldering is mainly used in soldering of through hole components.

Reflow soldering

Reflow soldering is a process in which a solder paste is used to temporarily attach one or thousands of tiny electrical components to their contact pads, after which the entire assembly is subjected to controlled heat. The solder paste reflows in a molten state, creating permanent solder joints. Heating may be accomplished by passing the assembly through a reflow oven or under an infrared lamp or by soldering individual joints [unconventionally] with a desoldering hot air pencil.

Solder paste is a material used in the manufacture of printed circuit boards to connect surface mount components to pads on the board. It is also possible to solder through hole pin in paste components by printing solder paste in/over the holes. The paste initially adheres components in place by being sticky, it is then heated melting the paste and forming a mechanical bond as well as an electrical connection. The paste is applied to the board by jet printing, stencil printing or syringe and then the components are put in place by a pick-and-place machine or by hand.

Selective soldering


Quad Flat No-leads package

Flat no-leads packages such as quad-flat no-leads (QFN) and dual-flat no-leads (DFN) physically and electrically connect integrated circuits to printed circuit boards. Flat no-leads, also known as micro leadframe (MLF) and SON, is a surface-mount technology, one of several package technologies that connect ICs to the surfaces of PCBs without through-holes. Flat no-lead is a near chip scale plastic encapsulated package made with a planar copper lead frame substrate. Perimeter lands on the package bottom provide electrical connections to the PCB. Flat no-lead packages include an exposed thermal pad to improve heat transfer out of the IC. Heat transfer can be further facilitated by metal vias in the thermal pad. The QFN package is similar to the quad-flat package (QFP), and a ball grid array (BGA).

Automated optical inspection (AOI) is an automated visual inspection of printed circuit board (PCB) manufacture where a camera autonomously scans the device under test for both catastrophic failure and quality defects. It is commonly used in the manufacturing process because it is a non-contact test method. It is implemented at many stages through the manufacturing process including bare board inspection, solder paste inspection (SPI), pre-reflow and post-reflow as well as other stages.

Package on package

Package on package (PoP) is an integrated circuit packaging method to combine vertically discrete logic and memory ball grid array (BGA) packages. Two or more packages are installed atop each other, i.e. stacked, with a standard interface to route signals between them. This allows higher component density in devices, such as mobile phones, personal digital assistants (PDA), and digital cameras.

Bead probe technology

Bead probe technology (BPT) is technique used to provide electrical access to printed circuit board (PCB) circuitry for performing in-circuit testing (ICT). It makes use of small beads of solder placed onto the board's traces to allow measuring and controlling of the signals using a test probe. This permits test access to boards on which standard ICT test pads are not feasible due to space constraints.

Soldering station

Soldering Station – multipurpose power soldering device designed for electronic components soldering. This type of equipment is mostly used in electronics and electrical engineering. Soldering station consists of one or more soldering tools connected to the main unit, which includes the controls, means of indication, and may be equipped with an electric transformer. Soldering stations may include some accessories – holders and stands, soldering tip cleaners, etc.

Thermal profiling

A thermal profile is a complex set of time-temperature data typically associated with the measurement of thermal temperatures in an oven. The thermal profile is often measured along a variety of dimensions such as slope, soak, time above liquidus (TAL), and peak.

Pad cratering is a mechanically induced fracture in the resin between copper foil and outermost layer of fiberglass of a printed circuit board (PCB). It may be within the resin or at the resin to fiberglass interface.

Dye-n-Pry, also called Dye And Pry, Dye and Pull, Dye Staining, or Dye Penetrant, is a destructive analysis technique used on surface mount technology (SMT) components to either perform failure analysis or inspect for solder joint integrity. It is an application of dye penetrant inspection.


  1. Rasmussen, Patty. "Reduce Manufacturing Rework: Five Steps to Take". Retrieved 2019-02-23.
  2. 1 2 Rework Analaysis of PS3 YLOD & Xbox RROD: Reflow vs Reball
  3. forum: Laptop reflowing improving reliability?
  4. Repair VGA card by re-flowing solder on the board (using domestic oven)
  5. The complete guide to reflowing (using heat gun)
  6. Sparkfun tutorials: Reflow skillet, July 2006