The Phong reflection model (also called Phong illumination or Phong lighting) is an empirical model of the local illumination of points on a surface designed by the computer graphics researcher Bui Tuong Phong. In 3D computer graphics, it is sometimes referred to as "Phong shading", particularly if the model is used with the interpolation method of the same name and in the context of pixel shaders or other places where a lighting calculation can be referred to as “shading”.
The Phong reflection model was developed by Bui Tuong Phong at the University of Utah, who published it in his 1975 Ph.D. dissertation. [1] [2] It was published in conjunction with a method for interpolating the calculation for each individual pixel that is rasterized from a polygonal surface model; the interpolation technique is known as Phong shading, even when it is used with a reflection model other than Phong's. Phong's methods were considered radical at the time of their introduction, but have since become the de facto baseline shading method for many rendering applications. Phong's methods have proven popular due to their generally efficient use of computation time per rendered pixel.
Phong reflection is an empirical model of local illumination. It describes the way a surface reflects light as a combination of the diffuse reflection of rough surfaces with the specular reflection of shiny surfaces. It is based on Phong's informal observation that shiny surfaces have small intense specular highlights, while dull surfaces have large highlights that fall off more gradually. The model also includes an ambient term to account for the small amount of light that is scattered about the entire scene.
For each light source in the scene, components and are defined as the intensities (often as RGB values) of the specular and diffuse components of the light sources, respectively. A single term controls the ambient lighting; it is sometimes computed as a sum of contributions from all light sources.
For each material in the scene, the following parameters are defined:
Furthermore, there is
Then the Phong reflection model provides an equation for computing the illumination of each surface point :
where the direction vector is calculated as the reflection of on the surface characterized by the surface normal using
The hats indicate that the vectors are normalized. The diffuse term is not affected by the viewer direction (). The specular term is large only when the viewer direction () is aligned with the reflection direction . Their alignment is measured by the power of the cosine of the angle between them. The cosine of the angle between the normalized vectors and is equal to their dot product. When is large, in the case of a nearly mirror-like reflection, the specular highlight will be small, because any viewpoint not aligned with the reflection will have a cosine less than one which rapidly approaches zero when raised to a high power.
Although the above formulation is the common way of presenting the Phong reflection model, each term should only be included if the term's dot product is positive. (Additionally, the specular term should only be included if the dot product of the diffuse term is positive.)
When the color is represented as RGB values, as often is the case in computer graphics, this equation is typically modeled separately for R, G and B intensities, allowing different reflection constants and for the different color channels.
When implementing the Phong reflection model, there are a number of methods for approximating the model, rather than implementing the exact formulas, which can speed up the calculation; for example, the Blinn–Phong reflection model is a modification of the Phong reflection model, which is more efficient if the viewer and the light source are treated to be at infinity.
Another approximation [3] that addresses the calculation of the exponentiation in the specular term is the following: Considering that the specular term should be taken into account only if its dot product is positive, it can be approximated as
where , and is a real number which doesn't have to be an integer. If is chosen to be a power of 2, i.e. where is an integer, then the expression can be more efficiently calculated by squaring times, i.e.
This approximation of the specular term holds for a sufficiently large integer (typically, 4 or 8 will be enough).
Furthermore, the value can be approximated as , or as The latter is much less sensitive to normalization errors in and than Phong's dot-product-based is[ citation needed ], and practically doesn't require and to be normalized[ citation needed ] except for very low-resolved triangle meshes.
This method substitutes a few multiplications for a variable exponentiation, and removes the need for an accurate reciprocal-square-root-based vector normalization.
The Phong reflection model in combination with Phong shading is an approximation of shading of objects in real life. This means that the Phong equation can relate the shading seen in a photograph with the surface normals of the visible object. Inverse refers to the wish to estimate the surface normals given a rendered image, natural or computer-made.
The Phong reflection model contains many parameters, such as the surface diffuse reflection parameter (albedo) which may vary within the object. Thus the normals of an object in a photograph can only be determined, by introducing additional information such as the number of lights, light directions and reflection parameters.
For example, we have a cylindrical object, for instance a finger, and wish to compute the normal on a line on the object. We assume only one light, no specular reflection, and uniform known (approximated) reflection parameters. We can then simplify the Phong equation to:
With a constant equal to the ambient light and a constant equal to the diffusion reflection. We can re-write the equation to:
Which can be rewritten for a line through the cylindrical object as:
For instance if the light direction is 45 degrees above the object we get two equations with two unknowns.
Because of the powers of two in the equation there are two possible solutions for the normal direction. Thus some prior information of the geometry is needed to define the correct normal direction. The normals are directly related to angles of inclination of the line on the object surface. Thus the normals allow the calculation of the relative surface heights of the line on the object using a line integral, if we assume a continuous surface.
If the object is not cylindrical, we have three unknown normal values . Then the two equations still allow the normal to rotate around the view vector, thus additional constraints are needed from prior geometric information. For instance in face recognition those geometric constraints can be obtained using principal component analysis (PCA) on a database of depth-maps of faces, allowing only surface normals solutions which are found in a normal population. [4]
The Phong reflection model is often used together with Phong shading to shade surfaces in 3D computer graphics software. Apart from this, it may also be used for other purposes. For example, it has been used to model the reflection of thermal radiation from the Pioneer probes in an attempt to explain the Pioneer anomaly. [5]
In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.
In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.
In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem. In one dimension, it is equivalent to the fundamental theorem of calculus. In three dimensions, it is equivalent to the divergence theorem.
In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.
The bidirectional reflectance distribution function (BRDF), symbol , is a function of four real variables that defines how light from a source is reflected off an opaque surface. It is employed in the optics of real-world light, in computer graphics algorithms, and in computer vision algorithms. The function takes an incoming light direction, , and outgoing direction, , and returns the ratio of reflected radiance exiting along to the irradiance incident on the surface from direction . Each direction is itself parameterized by azimuth angle and zenith angle , therefore the BRDF as a whole is a function of 4 variables. The BRDF has units sr−1, with steradians (sr) being a unit of solid angle.
A specular highlight is the bright spot of light that appears on shiny objects when illuminated. Specular highlights are important in 3D computer graphics, as they provide a strong visual cue for the shape of an object and its location with respect to light sources in the scene.
In continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically deforming materials and other fluids and biological soft tissue.
The Blinn–Phong reflection model, also called the modified Phong reflection model, is a modification developed by Jim Blinn to the Phong reflection model.
Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients and ultimately allowing the out-of-sample prediction of the regressandconditional on observed values of the regressors. The simplest and most widely used version of this model is the normal linear model, in which given is distributed Gaussian. In this model, and under a particular choice of prior probabilities for the parameters—so-called conjugate priors—the posterior can be found analytically. With more arbitrarily chosen priors, the posteriors generally have to be approximated.
In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).
A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.
In probability theory and statistics, the normal-inverse-gamma distribution is a four-parameter family of multivariate continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and variance.
The multivariate stable distribution is a multivariate probability distribution that is a multivariate generalisation of the univariate stable distribution. The multivariate stable distribution defines linear relations between stable distribution marginals. In the same way as for the univariate case, the distribution is defined in terms of its characteristic function.
In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.
In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of eleven-dimensional supergravity.
Batch normalization is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015.
This article summarizes several identities in exterior calculus, a mathematical notation used in differential geometry.