Spectral rendering

Last updated

In computer graphics, spectral rendering is a technique in which a scene's light transport is modeled with real wavelengths. This process is typically slower than traditional rendering, which renders the scene in its red, green, and blue components and then overlays the images. Spectral rendering is often used in ray tracing or photon mapping to more accurately simulate the scene, often for comparison with an actual photograph to test the rendering algorithm (as in a Cornell Box) or to simulate different portions of the electromagnetic spectrum for the purpose of scientific work. The images simulated are not necessarily more realistic appearing, but when compared to a real image pixel for pixel the result is often much closer.

Contents

Spectral rendering can also simulate light sources and objects more effectively, as the light's emission spectrum can be used to release photons at a particular wavelength in proportion to the spectrum. Objects' spectral reflectance curves can similarly be used to reflect certain portions of the spectrum more accurately.

As an example, certain properties of tomatoes make them appear differently under sunlight than under fluorescent light. Using the blackbody radiation equations to simulate sunlight or the emission spectrum of a fluorescent bulb in combination with the tomato's spectral reflectance curve, more accurate images of each scenario can be produced.

Implementations

Render engines that define themselves as being capable of spectral rendering:

Related Research Articles

<span class="mw-page-title-main">Rendering (computer graphics)</span> Process of generating an image from a model

Rendering or image synthesis is the process of generating a photorealistic or non-photorealistic image from a 2D or 3D model by means of a computer program. The resulting image is referred to as a rendering. Multiple models can be defined in a scene file containing objects in a strictly defined language or data structure. The scene file contains geometry, viewpoint, textures, lighting, and shading information describing the virtual scene. The data contained in the scene file is then passed to a rendering program to be processed and output to a digital image or raster graphics image file. The term "rendering" is analogous to the concept of an artist's impression of a scene. The term "rendering" is also used to describe the process of calculating effects in a video editing program to produce the final video output.

<span class="mw-page-title-main">Electromagnetic spectrum</span> Range of frequencies or wavelengths of electromagnetic radiation

The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high frequency these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications.

<span class="mw-page-title-main">Ray tracing (graphics)</span> Rendering method

In 3D computer graphics, ray tracing is a technique for modeling light transport for use in a wide variety of rendering algorithms for generating digital images.

<span class="mw-page-title-main">Visible spectrum</span> Portion of the electromagnetic spectrum that is visible to the human eye

The visible spectrum is the band of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called visible light. The optical spectrum is sometimes considered to be the same as the visible spectrum, but some authors define the term more broadly, to include the ultraviolet and infrared parts of the electromagnetic spectrum as well, known collectively as optical radiation.

<span class="mw-page-title-main">Metamerism (color)</span> Perceived matching of colors in colorimetry

In colorimetry, metamerism is a perceived matching of colors with different (nonmatching) spectral power distributions. Colors that match this way are called metamers.

Metropolis light transport (MLT) is a global illumination application of a Monte Carlo method called the Metropolis–Hastings algorithm to the rendering equation for generating images from detailed physical descriptions of three-dimensional scenes.

In computer graphics, photon mapping is a two-pass global illumination rendering algorithm developed by Henrik Wann Jensen between 1995 and 2001 that approximately solves the rendering equation for integrating light radiance at a given point in space. Rays from the light source and rays from the camera are traced independently until some termination criterion is met, then they are connected in a second step to produce a radiance value. The algorithm is used to realistically simulate the interaction of light with different types of objects. Specifically, it is capable of simulating the refraction of light through a transparent substance such as glass or water, diffuse interreflection between illuminated objects, the subsurface scattering of light in translucent materials, and some of the effects caused by particulate matter such as smoke or water vapor. Photon mapping can also be extended to more accurate simulations of light, such as spectral rendering. Progressive photon mapping (PPM) starts with ray tracing and then adds more and more photon mapping passes to provide a progressively more accurate render.

An image intensifier or image intensifier tube is a vacuum tube device for increasing the intensity of available light in an optical system to allow use under low-light conditions, such as at night, to facilitate visual imaging of low-light processes, such as fluorescence of materials in X-rays or gamma rays, or for conversion of non-visible light sources, such as near-infrared or short wave infrared to visible. They operate by converting photons of light into electrons, amplifying the electrons, and then converting the amplified electrons back into photons for viewing. They are used in devices such as night-vision goggles.

<span class="mw-page-title-main">Quantum efficiency</span> Property of photosensitive devices

The term quantum efficiency (QE) may apply to incident photon to converted electron (IPCE) ratio of a photosensitive device, or it may refer to the TMR effect of a magnetic tunnel junction.

The lumen is the unit of luminous flux, a measure of the perceived power of visible light emitted by a source, in the International System of Units (SI). Luminous flux differs from power in that radiant flux includes all electromagnetic waves emitted, while luminous flux is weighted according to a model of the human eye's sensitivity to various wavelengths; this weighting is standardized by the CIE and ISO. One lux is one lumen per square metre.

Actinism is the property of solar radiation that leads to the production of photochemical and photobiological effects. Actinism is derived from the Ancient Greek ἀκτίς, ἀκτῖνος. The word actinism is found, for example, in the terminology of imaging technology, medicine, and chemistry, and the concept of actinism is applied, for example, in chemical photography and X-ray imaging.

A spectroradiometer is a light measurement tool that is able to measure both the wavelength and amplitude of the light emitted from a light source. Spectrometers discriminate the wavelength based on the position the light hits at the detector array allowing the full spectrum to be obtained with a single acquisition. Most spectrometers have a base measurement of counts which is the un-calibrated reading and is thus impacted by the sensitivity of the detector to each wavelength. By applying a calibration, the spectrometer is then able to provide measurements of spectral irradiance, spectral radiance and/or spectral flux. This data is also then used with built in or PC software and numerous algorithms to provide readings or Irradiance (W/cm2), Illuminance, Radiance (W/sr), Luminance (cd), Flux, Chromaticity, Color Temperature, Peak and Dominant Wavelength. Some more complex spectrometer software packages also allow calculation of PAR μmol/m2/s, Metamerism, and candela calculations based on distance and include features like 2- and 20-degree observer, baseline overlay comparisons, transmission and reflectance.

<span class="mw-page-title-main">Rendering equation</span> Integral equation

In computer graphics, the rendering equation is an integral equation in which the equilibrium radiance leaving a point is given as the sum of emitted plus reflected radiance under a geometric optics approximation. It was simultaneously introduced into computer graphics by David Immel et al. and James Kajiya in 1986. The various realistic rendering techniques in computer graphics attempt to solve this equation.

<span class="mw-page-title-main">Subsurface scattering</span> Mechanism of light transport

Subsurface scattering (SSS), also known as subsurface light transport (SSLT), is a mechanism of light transport in which light that penetrates the surface of a translucent object is scattered by interacting with the material and exits the surface potentially at a different point. Light generally penetrates the surface and gets scattered a number of times at irregular angles inside the material before passing back out of the material at a different angle than it would have had if it had been reflected directly off the surface.

<span class="mw-page-title-main">Path tracing</span> Computer graphics method

Path tracing is a computer graphics Monte Carlo method of rendering images of three-dimensional scenes such that the global illumination is faithful to reality. Fundamentally, the algorithm is integrating over all the illuminance arriving to a single point on the surface of an object. This illuminance is then reduced by a surface reflectance function (BRDF) to determine how much of it will go towards the viewpoint camera. This integration procedure is repeated for every pixel in the output image. When combined with physically accurate models of surfaces, accurate models of real light sources, and optically correct cameras, path tracing can produce still images that are indistinguishable from photographs.

<span class="mw-page-title-main">Full-spectrum light</span> Light with frequencies ranging from infrared to near-ultraviolet

Full-spectrum light is light that covers the electromagnetic spectrum from infrared to near-ultraviolet, or all wavelengths that are useful to plant or animal life; in particular, sunlight is considered full spectrum, even though the solar spectral distribution reaching Earth changes with time of day, latitude, and atmospheric conditions.

Spectral imaging is imaging that uses multiple bands across the electromagnetic spectrum. While an ordinary camera captures light across three wavelength bands in the visible spectrum, red, green, and blue (RGB), spectral imaging encompasses a wide variety of techniques that go beyond RGB. Spectral imaging may use the infrared, the visible spectrum, the ultraviolet, x-rays, or some combination of the above. It may include the acquisition of image data in visible and non-visible bands simultaneously, illumination from outside the visible range, or the use of optical filters to capture a specific spectral range. It is also possible to capture hundreds of wavelength bands for each pixel in an image.

Computer graphics lighting is the collection of techniques used to simulate light in computer graphics scenes. While lighting techniques offer flexibility in the level of detail and functionality available, they also operate at different levels of computational demand and complexity. Graphics artists can choose from a variety of light sources, models, shading techniques, and effects to suit the needs of each application.

<span class="mw-page-title-main">Unbiased rendering</span> Type of rendering in computer graphics

Unbiased rendering in computer graphics refers to techniques that avoid systematic errors, or biases, in the radiance approximation of an image. This term specifically relates to statistical bias, not subjective bias. Unbiased rendering aims to replicate real-world lighting and shading as accurately as possible without shortcuts. Path tracing and its derivatives are examples of unbiased techniques, whereas traditional ray tracing methods are typically biased.

<span class="mw-page-title-main">LuxCoreRender</span> Open-source physically-based rendering engine

LuxCoreRender is a free and open-source physically based rendering software. It began as LuxRender in 2008 before changing its name to LuxCoreRender in 2017 as part of a project reboot. The LuxCoreRender software runs on Linux, Mac OS X, and Windows.

References

  1. "Technical Specifications -".{{cite web}}: Check |archive-url= value (help)
  2. "Technical Specifications - Provisional". www.randomcontrol.com. Archived from the original on 2010-01-21.
  3. "Fast 3D Rendering, Spectral Rendering, Volumetrics & More Features".
  4. "Technical Specifications | Indigo Renderer".
  5. "Lux Render - General News 2021".
  6. "mental images: Features". www.mentalimages.com. Archived from the original on 2011-01-28.
  7. "Mitsuba 2 - A Retargetable Forward and Inverse Renderer".
  8. "Octane Render". render.otoy.com. Archived from the original on 2012-11-30.
  9. "Spectral Studio - Features". Archived from the original on 2012-01-14. Retrieved 2012-03-19.
  10. "Thea Products".
  11. "Spectral rendering". 22 February 2013.
  12. "About ART « the ART Homepage @ CGG".
  13. "Manuka | Weta Digital".
  14. "Predict Engine | United Visual Researchers".
  15. "Welcome to The Malia Rendering Framework!".