Vertex (computer graphics)

Last updated
UML class diagram UML class vector.svg
UML class diagram

A vertex (plural vertices) in computer graphics is a data structure that describes certain attributes, like the position of a point in 2D or 3D space, or multiple points on a surface.

Contents

Application to 3D models

3D models are most often represented as triangulated polyhedra forming a triangle mesh. Non-triangular surfaces can be converted to an array of triangles through tessellation. Attributes from the vertices are typically interpolated across mesh surfaces.

Vertex attributes

The vertices of triangles are associated not only with spatial position but also with other values used to render the object correctly. Most attributes of a vertex represent vectors in the space to be rendered. These vectors are typically 1 (x), 2 (x, y), or 3 (x, y, z) dimensional and can include a fourth homogeneous coordinate (w). These values are given meaning by a material description. In realtime rendering these properties are used by a vertex shader or vertex pipeline.

Such attributes can include:

Position
2D or 3D coordinates representing a position in space
Color
Typically diffuse or specular RGB values, either representing surface colour or precomputed lighting information.
Reflectance
of the surface at the vertex, e.g. specular exponent, metallicity, fresnel values.
Texture coordinates
Also known as UV coordinates, these control the texture mapping of the surface, possibly for multiple layers.
normal vectors
These define an approximated curved surface at the location of the vertex, used for lighting calculations (such as Phong shading), normal mapping, or displacement mapping, and to control subdivision.
tangent vectors
These define an approximated curved surface at the location of the vertex, used for lighting calculations (such as Phong shading), normal mapping, or displacement mapping, and to control subdivision.
Blend weights
Bone weights
Weighting for assignment to bones to control deformation in skeletal animation.
Blend shapes
Multiple position vectors may be specified to be blended over time, especially for facial animation.

See also

For how vertices are processed on 3D graphics cards, see shader.

Related Research Articles

<span class="mw-page-title-main">Gouraud shading</span> Interpolation method in computer graphics

Gouraud shading, named after Henri Gouraud, is an interpolation method used in computer graphics to produce continuous shading of surfaces represented by polygon meshes. In practice, Gouraud shading is most often used to achieve continuous lighting on triangle meshes by computing the lighting at the corners of each triangle and linearly interpolating the resulting colours for each pixel covered by the triangle. Gouraud first published the technique in 1971.

<span class="mw-page-title-main">Texture mapping</span> Method of defining surface detail on a computer-generated graphic or 3D model

Texture mapping is a method for mapping a texture on a computer-generated graphic. Texture here can be high frequency detail, surface texture, or color.

The Phong reflection model is an empirical model of the local illumination of points on a surface designed by the computer graphics researcher Bui Tuong Phong. In 3D computer graphics, it is sometimes referred to as "Phong shading", particularly if the model is used with the interpolation method of the same name and in the context of pixel shaders or other places where a lighting calculation can be referred to as “shading”.

<span class="mw-page-title-main">Phong shading</span> Interpolation technique for surface shading

In 3D computer graphics, Phong shading, Phong interpolation, or normal-vector interpolation shading is an interpolation technique for surface shading invented by computer graphics pioneer Bui Tuong Phong. Phong shading interpolates surface normals across rasterized polygons and computes pixel colors based on the interpolated normals and a reflection model. Phong shading may also refer to the specific combination of Phong interpolation and the Phong reflection model.

<span class="mw-page-title-main">Shading</span> Depicting depth through varying levels of darkness

Shading refers to the depiction of depth perception in 3D models or illustrations by varying the level of darkness. Shading tries to approximate local behavior of light on the object's surface and is not to be confused with techniques of adding shadows, such as shadow mapping or shadow volumes, which fall under global behavior of light.

<span class="mw-page-title-main">Normal mapping</span> Texture mapping technique

In 3D computer graphics, normal mapping, or Dot3 bump mapping, is a texture mapping technique used for faking the lighting of bumps and dents – an implementation of bump mapping. It is used to add details without using more polygons. A common use of this technique is to greatly enhance the appearance and details of a low polygon model by generating a normal map from a high polygon model or height map.

<span class="mw-page-title-main">Polygon mesh</span> Set of polygons to define a 3D model

In 3D computer graphics and solid modeling, a polygon mesh is a collection of vertices, edges and faces that defines the shape of a polyhedral object. The faces usually consist of triangles, quadrilaterals (quads), or other simple convex polygons (n-gons), since this simplifies rendering, but may also be more generally composed of concave polygons, or even polygons with holes.

<span class="mw-page-title-main">Shader</span> Type of program in a graphical processing unit (GPU)

In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene—a process known as shading. Shaders have evolved to perform a variety of specialized functions in computer graphics special effects and video post-processing, as well as general-purpose computing on graphics processing units.

<span class="mw-page-title-main">Lightmap</span> Data structure used in lightmapping

A lightmap is a data structure used in lightmapping, a form of surface caching in which the brightness of surfaces in a virtual scene is pre-calculated and stored in texture maps for later use. Lightmaps are most commonly applied to static objects in applications that use real-time 3D computer graphics, such as video games, in order to provide lighting effects such as global illumination at a relatively low computational cost.

OBJ is a geometry definition file format first developed by Wavefront Technologies for its Advanced Visualizer animation package. The file format is open and has been adopted by other 3D graphics application vendors.

In 3D computer graphics, polygonal modeling is an approach for modeling objects by representing or approximating their surfaces using polygon meshes. Polygonal modeling is well suited to scanline rendering and is therefore the method of choice for real-time computer graphics. Alternate methods of representing 3D objects include NURBS surfaces, subdivision surfaces, and equation-based representations used in ray tracers.

In computer graphics, per-pixel lighting refers to any technique for lighting an image or scene that calculates illumination for each pixel on a rendered image. This is in contrast to other popular methods of lighting such as vertex lighting, which calculates illumination at each vertex of a 3D model and then interpolates the resulting values over the model's faces to calculate the final per-pixel color values.

The Blinn–Phong reflection model, also called the modified Phong reflection model, is a modification developed by Jim Blinn to the Phong reflection model.

Computer graphics lighting is the collection of techniques used to simulate light in computer graphics scenes. While lighting techniques offer flexibility in the level of detail and functionality available, they also operate at different levels of computational demand and complexity. Graphics artists can choose from a variety of light sources, models, shading techniques, and effects to suit the needs of each application.

In the field of 3D computer graphics, Multiple Render Targets, or MRT, is a feature of modern graphics processing units (GPUs) that allows the programmable rendering pipeline to render images to multiple render target textures at once. These textures can then be used as inputs to other shaders or as texture maps applied to 3D models. Introduced by OpenGL 2.0 and Direct3D 9, MRT can be invaluable to real-time 3D applications such as video games. Before the advent of MRT, a programmer would have to issue a command to the GPU to draw the 3D scene once for each render target texture, resulting in redundant vertex transformations which, in a real-time program expected to run as fast as possible, can be quite time-consuming. With MRT, a programmer creates a pixel shader that returns an output value for each render target. This pixel shader then renders to all render targets with a single draw command.

PICA200 is a graphics processing unit (GPU) designed by Digital Media Professionals Inc. (DMP), a Japanese GPU design startup company, for use in embedded devices such as vehicle systems, mobile phones, cameras, and game consoles. The PICA200 is an IP Core which can be licensed to other companies to incorporate into their SOCs. It was most notably licensed for use in the Nintendo 3DS.

<span class="mw-page-title-main">Displacement mapping</span> Computer graphics technique

Displacement mapping is an alternative computer graphics technique in contrast to bump, normal, and parallax mapping, using a texture or height map to cause an effect where the actual geometric position of points over the textured surface are displaced, often along the local surface normal, according to the value the texture function evaluates to at each point on the surface. It gives surfaces a great sense of depth and detail, permitting in particular self-occlusion, self-shadowing and silhouettes; on the other hand, it is the most costly of this class of techniques owing to the large amount of additional geometry.

Additive manufacturing file format (AMF) is an open standard for describing objects for additive manufacturing processes such as 3D printing. The official ISO/ASTM 52915:2016 standard is an XML-based format designed to allow any computer-aided design software to describe the shape and composition of any 3D object to be fabricated on any 3D printer via a computer-aided manufacturing software. Unlike its predecessor STL format, AMF has native support for color, materials, lattices, and constellations.

<span class="mw-page-title-main">Tessellation (computer graphics)</span> Computer graphics terminology

In computer graphics, tessellation is the dividing of datasets of polygons presenting objects in a scene into suitable structures for rendering. Especially for real-time rendering, data is tessellated into triangles, for example in OpenGL 4.0 and Direct3D 11.

This is a glossary of terms relating to computer graphics.

References