Bessel ellipsoid

Last updated

The Bessel ellipsoid (or Bessel 1841) is an important reference ellipsoid of geodesy. It is currently used by several countries for their national geodetic surveys, but will be replaced in the next decades by modern ellipsoids of satellite geodesy.

Contents

The Bessel ellipsoid was derived in 1841 by Friedrich Wilhelm Bessel, based on several arc measurements and other data of continental geodetic networks of Europe, Russia and the British Survey of India. It is based on 10 meridian arcs and 38 precise measurements of the astronomic latitude and longitude (see also astro geodesy). The dimensions of the Earth ellipsoid axes were defined by logarithms in keeping with former calculation methods.

The Bessel and GPS ellipsoids

The Bessel ellipsoid fits especially well to the geoid curvature of Europe and Eurasia. Therefore, it is optimal for National survey networks in these regions, although its axes are about 700 m shorter than that of the mean Earth ellipsoid derived by satellites.

Below there are the two axes a, b and the flattening f = (ab)/a. For comparison, the data of the modern World Geodetic System WGS84 are shown, which is mainly used for modern surveys and the GPS system.

Usage

The ellipsoid data published by Bessel (1841) were then the best and most modern data mapping the Earth's figure. They were used by almost all national surveys. Some surveys in Asia switched to the Clarke ellipsoid of 1880. After the arrival of the geophysical reduction techniques many projects used other examples such as the Hayford ellipsoid of 1910 which was adopted in 1924 by the International Association of Geodesy (IAG) as the International ellipsoid 1924. All of them are influenced by geophysical effects like vertical deflection, mean continental density, rock density and the distribution of network data. Every reference ellipsoid deviates from the worldwide data (e.g. of satellite geodesy) in the same way as the pioneering work of Bessel.

In 1950 about 50% of the European triangulation networks and about 20% of other continents networks were based on the Bessel ellipsoid. In the following decades the American states switched mainly to the Hayford ellipsoid 1908 ("internat. Ell. 1924") which was also used for the European unification project ED50 sponsored by the United States after World War II. The Soviet Union forced its satellite states in Eastern Europe to use the Krasovsky ellipsoid of about 1940.

As of 2010 the Bessel ellipsoid is the geodetic system for Germany, for Austria and the Czech Republic. It is also used partly in the successor states of Yugoslavia and some Asian countries: Sumatra and Borneo, Belitung, Okinawa (Japan). In Africa it is the geodetic system for Eritrea and Namibia.

See also

Related Research Articles

<span class="mw-page-title-main">Friedrich Wilhelm Bessel</span> German astronomer and mathematician (1784–1846)

Friedrich Wilhelm Bessel was a German astronomer, mathematician, physicist, and geodesist. He was the first astronomer who determined reliable values for the distance from the sun to another star by the method of parallax. Certain important mathematical functions were named Bessel functions after Bessel's death, though they had originally been discovered by Daniel Bernoulli before being generalised by Bessel.

<span class="mw-page-title-main">Geodesy</span> Science of measuring the shape, orientation, and gravity of Earth

Geodesy or geodetics is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems. Geodesy is an earth science and many consider the study of Earth's shape and gravity to be central to that science. It is also a discipline of applied mathematics.

<span class="mw-page-title-main">Latitude</span> Geographic coordinate specifying north–south position

In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth.

<span class="mw-page-title-main">World Geodetic System</span> Geodetic reference system

The World Geodetic System (WGS) is a standard used in cartography, geodesy, and satellite navigation including GPS. The current version, WGS 84, defines an Earth-centered, Earth-fixed coordinate system and a geodetic datum, and also describes the associated Earth Gravitational Model (EGM) and World Magnetic Model (WMM). The standard is published and maintained by the United States National Geospatial-Intelligence Agency.

<span class="mw-page-title-main">Figure of the Earth</span> Size and shape used to model the Earth for geodesy

In geodesy, the figure of the Earth is the size and shape used to model planet Earth. The kind of figure depends on application, including the precision needed for the model. A spherical Earth is a well-known historical approximation that is satisfactory for geography, astronomy and many other purposes. Several models with greater accuracy have been developed so that coordinate systems can serve the precise needs of navigation, surveying, cadastre, land use, and various other concerns.

<span class="mw-page-title-main">Vertical deflection</span> Measure of the downward gravitational forces shift due to nearby mass

The vertical deflection (VD) or deflection of the vertical (DoV), also known as deflection of the plumb line and astro-geodetic deflection, is a measure of how far the gravity direction at a given point of interest is rotated by local mass anomalies such as nearby mountains. They are widely used in geodesy, for surveying networks and for geophysical purposes.

<span class="mw-page-title-main">Geodetic datum</span> Reference frame for measuring location

A geodetic datum or geodetic system is a global datum reference or reference frame for unambiguously representing the position of locations on Earth by means of either geodetic coordinates or geocentric coordinates. Datums are crucial to any technology or technique based on spatial location, including geodesy, navigation, surveying, geographic information systems, remote sensing, and cartography. A horizontal datum is used to measure a horizontal position, across the Earth's surface, in latitude and longitude or another related coordinate system. A vertical datum is used to measure the elevation or depth relative to a standard origin, such as mean sea level (MSL). A three-dimensional datum enables the expression of both horizontal and vertical position components in a unified form. The concept can be generalized for other celestial bodies as in planetary datums.

<span class="mw-page-title-main">European Terrestrial Reference System 1989</span> Geodetic reference frame fixed to the Eurasian Plate

The European Terrestrial Reference System 1989 (ETRS89) is an ECEF geodetic Cartesian reference frame, in which the Eurasian Plate as a whole is static. The coordinates and maps in Europe based on ETRS89 are not subject to change due to the continental drift.

<span class="mw-page-title-main">Arc measurement</span> Technique of determining the radius of Earth

Arc measurement, sometimes degree measurement, is the astrogeodetic technique of determining the radius of Earth – more specifically, the local Earth radius of curvature of the figure of the Earth – by relating the latitude difference and the geographic distance surveyed between two locations on Earth's surface. The most common variant involves only astronomical latitudes and the meridian arc length and is called meridian arc measurement; other variants may involve only astronomical longitude or both geographic coordinates . Arc measurement campaigns in Europe were the precursors to the International Association of Geodesy (IAG).

The Swiss coordinate system is a geographic coordinate system used in Switzerland and Liechtenstein for maps and surveying by the Swiss Federal Office of Topography (Swisstopo).

<span class="mw-page-title-main">ED50</span> Reference frame for European geodesy

ED50 is a geodetic datum which was defined after World War II for the international connection of geodetic networks.

<span class="mw-page-title-main">Flattening</span> Measure of compression between circle to ellipse or sphere to an ellipsoid of revolution

Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution (spheroid) respectively. Other terms used are ellipticity, or oblateness. The usual notation for flattening is and its definition in terms of the semi-axes and of the resulting ellipse or ellipsoid is

<span class="mw-page-title-main">Spatial reference system</span> System to specify locations on Earth

A spatial reference system (SRS) or coordinate reference system (CRS) is a framework used to precisely measure locations on the surface of Earth as coordinates. It is thus the application of the abstract mathematics of coordinate systems and analytic geometry to geographic space. A particular SRS specification comprises a choice of Earth ellipsoid, horizontal datum, map projection, origin point, and unit of measure. Thousands of coordinate systems have been specified for use around the world or in specific regions and for various purposes, necessitating transformations between different SRS.

<span class="mw-page-title-main">North American Datum</span> Reference frame for geodesy on the continent

The North American Datum (NAD) is the horizontal datum now used to define the geodetic network in North America. A datum is a formal description of the shape of the Earth along with an "anchor" point for the coordinate system. In surveying, cartography, and land-use planning, two North American Datums are in use for making lateral or "horizontal" measurements: the North American Datum of 1927 (NAD 27) and the North American Datum of 1983 (NAD 83). Both are geodetic reference systems based on slightly different assumptions and measurements.

<span class="mw-page-title-main">Earth-centered, Earth-fixed coordinate system</span> 3-D coordinate system centered on the Earth

The Earth-centered, Earth-fixed coordinate system, also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth as X, Y, and Z measurements from its center of mass. Its most common use is in tracking the orbits of satellites and in satellite navigation systems for measuring locations on the surface of the Earth, but it is also used in applications such as tracking crustal motion.

<span class="mw-page-title-main">Helmert transformation</span> Transformation method within a three-dimensional space

The Helmert transformation is a geometric transformation method within a three-dimensional space. It is frequently used in geodesy to produce datum transformations between datums. The Helmert transformation is also called a seven-parameter transformation and is a similarity transformation.

In geodesy and navigation, a meridian arc is the curve between two points on the Earth's surface having the same longitude. The term may refer either to a segment of the meridian, or to its length.

<span class="mw-page-title-main">Earth ellipsoid</span> Geometric figure which approximates the Earths shape

An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations.

<span class="mw-page-title-main">Hellenic Geodetic Reference System 1987</span>

The Hellenic Geodetic Reference System 1987 or HGRS87 is a geodetic system commonly used in Greece (SRID=2100). The system specifies a local geodetic datum and a projection system. In some documents it is called Greek Geodetic Reference System 1987 or GGRS87.

<span class="mw-page-title-main">Web Mercator projection</span> Mercator variant map projection

Web Mercator, Google Web Mercator, Spherical Mercator, WGS 84 Web Mercator or WGS 84/Pseudo-Mercator is a variant of the Mercator map projection and is the de facto standard for Web mapping applications. It rose to prominence when Google Maps adopted it in 2005. It is used by virtually all major online map providers, including Google Maps, CARTO, Mapbox, Bing Maps, OpenStreetMap, Mapquest, Esri, and many others. Its official EPSG identifier is EPSG:3857, although others have been used historically.

References

  1. Bessel, Friedrich Wilhelm (1841-12-01). "Über einen Fehler in der Berechnung der französischen Gradmessung und seineh Einfluß auf die Bestimmung der Figur der Erde. Von Herrn Geh. Rath und Ritter Bessel". Astronomische Nachrichten. 19 (7): 216. Bibcode:1841AN.....19...97B. doi:10.1002/asna.18420190702. ISSN   0004-6337.
  2. Viik, T, F. W. Bessel and Geodesy, vol. Struve Geodetic Arc, 2006 International Conference, The Struve Arc Extension in Space and Time, Haparanda and Pajala, Sweden, 13–15 August 2006, pp. 8–10
  3. "Formulas and constants for the calculation of the Swiss conformal cylindrical projection and for the transformation between coordinate systems" (PDF). swisstopo. 2016. p. 5. Archived (PDF) from the original on 2019-12-05. Retrieved 2021-09-25.