Southland Syncline

Last updated

The parallel strike ridges of The Catlins, which form part of the syncline, can clearly be seen running from northwest to southeast in the upper part of this image. The Catlins.jpg
The parallel strike ridges of The Catlins, which form part of the syncline, can clearly be seen running from northwest to southeast in the upper part of this image.

The Southland Syncline is a major geological structure located in the Southland Region of New Zealand's South Island. The syncline folds the Mesozoic greywackes of the Murihiku Terrane. The northern limb of the fold is steep to overturned, while the southern limb dips shallowly to the northeast. [1] The axial plan dips to the northeast and the axis plunges to the southeast. [2]

Contents

The Murihiku Terrane is formed predominantly from Permian to Jurassic sedimentary rocks with minor igneous intrusions, and is marked by prominent strike ridges particularly on its northern limb due to the steeper dip. [3] These are created from the erosion of alternating strata of sandstone and mudstone. [4] The northern edge of this fold system is marked by the Murihiku Escarpment, at the southern extreme of the Waimea Plains. [5] Many of the names of stages and epochs in the Permian, Triassic, and Jurassic periods in the New Zealand geologic time scale are named for places within or close to the Southland Syncline and Murihiku Terrane.

The ridges run northwest from the Pacific coast in the Catlins to the Takitimu Range, and includes the Hokonui Hills, [6] which rise above the otherwise flat land of the Southland Plains (to the south) and Waimea Plains (to the north). The syncline dates from the Cretaceous, [7] though the Hokonui Hills are caused by more recent uplift. [6]

In the west, the syncline meets the country's largest fault system, the Alpine Fault. This fault is a transform fault for much of its length, and as such the westernmost part of the Southland Syncline is not found in the Southland Region, but continues several hundred kilometres to the north in the Nelson-Tasman area. [8] The same fold is found as far north as the Auckland Region where it is called the Kaimango Syncline. [9]

See also

Notes

Related Research Articles

<span class="mw-page-title-main">Hokonui Hills</span> Range of hills in Southland, New Zealand

The Hokonui Hills, also known as The Hokonui Mountains or simply The Hokonui, are a range of hills in central Southland, New Zealand. They rise to 600 metres above the surrounding Southland Plains, of which the hills mark a northern extremity.

<span class="mw-page-title-main">Syncline</span> Structural geology term for a fold with younger layers closer to the center of the structure

In structural geology, a syncline is a fold with younger layers closer to the center of the structure, whereas an anticline is the inverse of a syncline. A synclinorium is a large syncline with superimposed smaller folds. Synclines are typically a downward fold (synform), termed a synformal syncline, but synclines that point upwards can be found when strata have been overturned and folded.

In geology, a terrane is a crust fragment formed on a tectonic plate and accreted or "sutured" to crust lying on another plate. The crustal block or fragment preserves its own distinctive geologic history, which is different from that of the surrounding areas—hence the term "exotic" terrane. The suture zone between a terrane and the crust it attaches to is usually identifiable as a fault. A sedimentary deposit that buries the contact of the terrane with adjacent rock is called an overlap formation. An igneous intrusion that has intruded and obscured the contact of a terrane with adjacent rock is called a stitching pluton.

<span class="mw-page-title-main">Anticline</span> In geology, an anticline is a type of fold that is an arch-like shape

In structural geology, an anticline is a type of fold that is an arch-like shape and has its oldest beds at its core, whereas a syncline is the inverse of an anticline. A typical anticline is convex up in which the hinge or crest is the location where the curvature is greatest, and the limbs are the sides of the fold that dip away from the hinge. Anticlines can be recognized and differentiated from antiforms by a sequence of rock layers that become progressively older toward the center of the fold. Therefore, if age relationships between various rock strata are unknown, the term antiform should be used.

<span class="mw-page-title-main">Hanson Formation</span> Geological formation in Ross Dependency, Antarctica

The Hanson Formation is a geologic formation on Mount Kirkpatrick and north Victoria Land, Antarctica. It is one of the two major dinosaur-bearing rock groups found on Antarctica to date; the other is the Snow Hill Island Formation and related formations from the Late Cretaceous of the Antarctic Peninsula. The formation has yielded some Mesozoic specimens, but most of it is as yet unexcavated. Part of the Victoria Group of the Transantarctic Mountains, it lies below the Prebble Formation and above the Falla Formation. The formation includes material from volcanic activity linked to the Karoo-Ferar eruptions of the Lower Jurassic. The climate of the zone was similar to that of modern southern Chile, humid, with a temperature interval of 17–18 degrees. The Hanson Formation is correlated with the Section Peak Formation of the Eisenhower Range and Deep Freeze Range, as well as volcanic deposits on the Convoy Range and Ricker Hills of southern Victoria Land.

<span class="mw-page-title-main">Torlesse Composite Terrane</span> Terrane found in New Zealand

The Torlesse Composite Terrane is a plate tectonic terrane forming part of the South Island of New Zealand. It contains the Rakaia, Aspiring and Pahau Terranes and the Esk Head Belt. Greywacke is the dominant rock type of the composite terrane; argillite is less common and there are minor basalt occurrences. The Torlesse Composite Terrane is found east of the Alpine Fault in the Southern Alps of New Zealand. Its southern extent is a cryptic boundary with the Caples Terrane within the Haast Schists in Central Otago. It is named for the Torlesse Range in Canterbury.

<span class="mw-page-title-main">Haast Schist</span>

The Haast Schist, which contains both the Alpine and Otago Schist, is a metamorphic unit in the South Island of New Zealand. It extends from Central Otago, along the eastern side of the Alpine Fault to Cook Strait. There are also isolated outcrops of the Haast Schist within the central North Island. The schists were named after Haast Pass on the West Coast. The Haast Schist can be divided geographically from north to south into the Kaimanawa, Terawhiti, Marlborough, Alpine, Otago and Chatham schist.

The Huriwai River is a river of about 9 km (5.6 mi) in New Zealand's North Island. It rises in rough hill country to the southeast of Port Waikato, flowing west to reach the Tasman Sea 5 kilometres (3 mi) south of the mouth of the Waikato River. The main tributary is the Mangapai Stream.

The Auckland Region of New Zealand is built on a basement of greywacke rocks that form many of the islands in the Hauraki Gulf, the Hunua Ranges, and land south of Port Waikato. The Waitākere Ranges in the west are the remains of a large andesitic volcano, and Great Barrier Island was formed by the northern end of the Coromandel Volcanic Zone. The Auckland isthmus and North Shore are composed of Waitemata sandstone and mudstone, and portions of the Northland Allochthon extend as far south as Albany. Little Barrier Island was formed by a relatively isolated andesitic volcano, active around 1 to 3 million years ago.

<span class="mw-page-title-main">Geology of the Tasman District</span>

The Tasman Region, and the small adjoining Nelson Region, form one of the more geologically interesting regions of New Zealand. It contains the oldest rocks of anywhere on New Zealand's main islands. It contains all the main terranes that make up New Zealand's basement. These basement rocks include Ultramafic rocks, such as Serpentine and Dunite, and valuable minerals, such as Gold. The Nelson Region is bordered to the south by the Alpine Fault, the main fault forming the boundary between the Pacific Plate and the Indo-Australian Plate, that generated the Southern Alps.

<span class="mw-page-title-main">Marlborough Fault System</span> Geological features of New Zealand

The Marlborough Fault System is a set of four large dextral strike-slip faults and other related structures in the northern part of South Island, New Zealand, which transfer displacement between the mainly transform plate boundary of the Alpine fault and the mainly destructive boundary of the Kermadec Trench, and together form the boundary between the Australian and Pacific Plates.

<span class="mw-page-title-main">Dun Mountain-Maitai Terrane</span>

The Dun Mountain-Maitai Terrane comprises the Dun Mountain Ophiolite Belt, Maitai Group and Patuki Mélange. The Dun Mountain Ophiolite is an ophiolite of Permian age located in New Zealand's South Island. Prehistorically this ophiolite was quarried by Māori for both metasomatized argillite and pounamu (jade) which was used in the production of tools and jewellery.

<span class="mw-page-title-main">Takaka Terrane</span>

The Takaka Terrane is a Paleozoic terrane that outcrops in the South Island of New Zealand. It is most extensively exposed within the Kahurangi National Park in the Tasman District. The terrane is mostly made up of marble and volcanic rocks but is highly variable in composition. It ranges in age from mid-Cambrian to Devonian time, including New Zealand's oldest rocks, which are found in the Cobb Valley in north-west Nelson. The Cobb Valley is also the location of "Trilobite Rock" a glacial dropstone made from the moulted exoskeletons of trilobites. Asbestos was mined in the Cobb Valley from the Takaka Terrene between the late 1880s and 1917. The Takaka Terrane is highly deformed and has been intruded by many batholiths.

<span class="mw-page-title-main">Stratigraphy of New Zealand</span>

This is a list of the units into which the rock succession of New Zealand is formally divided. As new geological relationships have been discovered new names have been proposed and others are made obsolete. Not all these changes have been universally adopted. This table is based on the 2014 New Zealand Stratigraphic Lexicon (Litho2014). However, obsolete names that are still in use and names postdating the lexicon are included if it aids in understanding.

<span class="mw-page-title-main">Banks Peninsula Volcano</span> An extinct volcano in New Zealand

The Banks Peninsula Volcano is an extinct volcanic complex to the east of Christchurch on New Zealand's South Island. While the volcano is highly eroded it still forms the majority of Banks Peninsula with a highest point of 919 metres (3,015 ft). It is a composite of two main eruptive centers one originating at Lyttelton Harbour, the other at Akaroa Harbour. The eruptions were predominantly basaltic, with associated andesite and trachytes, with minor rhyolite. The volcanic activity occurred in the Late Miocene and possibly extended into the Early Pliocene. There are four volcanic groups, all of which are within the Māui Supergroup. The Christchurch earthquakes led to rumors of a possible eruption, however, there is no known magma chamber beneath the volcano and there has not been any sign of volcanic activity in the last 5 million years.

<span class="mw-page-title-main">Geology of the West Coast Region</span> Overview of the geology of the West Coast region

The geology of the West Coast of New Zealand's South Island is divided in two by the Alpine Fault, which runs through the Region in a North-East direction. To the West of the fault Paleozoic basement rocks are interluded by plutones and both are unconformably covered in a sedimentary sequence. To the East of the Alpine Fault are the Mesozoic Alpine Schist and Greywacke of the Southern Alps. There are numerous active faults throughout the region.

<span class="mw-page-title-main">Waitemata Group</span>

The Waitemata Group is an Early Miocene geologic group that is exposed in and around the Auckland Region of New Zealand, between the Whangarei Harbour in the North and the Raglan Harbour in the South. The Group is predominantly composed of deep water sandstone and mudstone (flysch). The sandstone dominated units form the cliffs around the Waitemata Harbour and rare more resistant conglomerates underlie some of Auckland's prominent ridges.

<span class="mw-page-title-main">Firth of Thames Fault</span> Postulated currently inactive fault in New Zealand

The Firth of Thames Fault is a postulated minor hinge fault along the western side of the still tectonically active Hauraki Rift which could have a length up to 220 km (140 mi) and fairly likely 150 km (93 mi). The recently identified but yet to be fully characterised 25km long Te Puninga fault is presumably an intra-rift fault within a few kilometres of its line. Up to the discovery of the Te Puninga fault the active displacement of the rift was believed to be accommodated by the active intra-rift Kerepehi Fault.

The Stokes Magnetic Anomaly is a magnetic anomaly on the earth's surface that extends from New Caledonia to the Chatham Rise with complexity consistent with the theory of plate tectonics.

The Auckland regional faults have low seismic activity compared to much of New Zealand but do result in an earthquake risk to the Auckland metropolitan area, New Zealand's largest conurbation. There is also evidence of past tectonic volcanic associations in a city located within what is at best, a very recently dormant Auckland volcanic field.

References