Ring dike

Last updated
The Pilanesberg Ring Dike Complex in South Africa ISS017-E-6869pilanesberg.jpg
The Pilanesberg Ring Dike Complex in South Africa

A ring dike or ring dyke is an intrusive igneous body that is circular, oval or arcuate in plan and has steep contacts. [1] While the widths of ring dikes differ, they can be up to several thousand meters. [2] The most commonly accepted method of ring dike formation is directly related to collapse calderas. [3]

Contents

Caldera collapse and ring dike formation

Questa Caldera ring dike, exposed in the valley of the Red River, New Mexico, US Questa Caldera ring dike.jpg
Questa Caldera ring dike, exposed in the valley of the Red River, New Mexico, US

Collapse calderas form due to the emptying of a magma chamber. [4] Effusive eruptions that take place on the flanks of the associated volcano and a fissure system that direct magma away from the chamber are both mechanisms that can empty a magma chamber. As pressure in the magma chamber changes, an increase in tensile stresses create tension fractures at the surface of the volcano. The geometry of the top of the magma chamber dictates the location and magnitude of the tension fractures. In addition, it was found that the higher the radius to depth ratio of the magma chamber, the higher the probability of forming a collapse caldera. [3]

Once a tension threshold is approached, the roof of the magma chamber collapses in on itself, and is known as cauldron subsidence. [5] Tension fractures extend deeper in the profile and shear fractures or dip-slip faults form in a circular pattern around the caldera and are known as ring faults. Ring faults can be either vertical or steeply dipping faults. [6] When they are inward dipping, they are known as normal faults and when they are outward dipping they are known as reverse faults. Ring faults then allow magma to rise through the fractures, forming a ring dike. [7] These dikes can form as a direct result of collapse caldera formation, or through many injections around the ring fault over time. [8] The magma of a ring dike is typically composed of acidic or intermediate composition due to the less dense melt that exists at the top of the magma chamber. [9]

Another mechanism of ring dike formation

It has been hypothesized that ring dikes may form when inclined sheets are captured within a ring fault system, which cause them to act as feeder dikes. The deflection of the sheets may be caused by the difference in material properties between and within the fault zone. [10]

Implications

Whether or not a caldera ring fault dips inward or outward from the center of subsidence is a highly contentious issue. Ring faults near the surface are subject to erosion and mass wasting, changing the morphology of the caldera walls and making it difficult to tell the dip of the fault at formation. [10]

Well known examples

Ossipee ring-dike complex

About 36 ring dikes have been found in the Ossipee Mountains in New Hampshire. Caldera subsidence appears to be the mechanism leading to the formation of some of the ring dikes, but not all of them. The composition ranges from monzonite to quartz syenite. [11]

Loch Bà ring dike

The Loch Bà ring dike, found on the Isle of Mull in Scotland, serves as a classic example of a well formed ring dike. [12] This intrusive body forms an oval and its diameter can be measured at roughly 5.8 km by 8.5 km. The width of the dike varies throughout the profile, with a maximum width of approximately 300 meters. The composition varies from rhyolite to felsite, with phenocrysts of alkali feldspar and mafic minerals. [13]

See also

Related Research Articles

A caldera is a large cauldron-like hollow that forms shortly after the emptying of a magma chamber in a volcano eruption. An eruption that ejects large volumes of magma over a short period of time can cause significant detriment to the structural integrity of such a chamber, greatly diminishing its capacity to support its own roof, and any substrate or rock resting above. The ground surface then collapses into the emptied or partially emptied magma chamber, leaving a large depression at the surface. Although sometimes described as a crater, the feature is actually a type of sinkhole, as it is formed through subsidence and collapse rather than an explosion or impact. Compared to the thousands of volcanic eruptions that occur over the course of a century, the formation of a caldera is a rare event, occurring only a few times within a given window of 100 years. Only seven caldera-forming collapses are known to have occurred between 1911 and 2016. More recently, a caldera collapse occurred at Kīlauea, Hawaii in 2018.

<span class="mw-page-title-main">Breccia</span> Rock composed of angular fragments

Breccia is a rock composed of large angular broken fragments of minerals or rocks cemented together by a fine-grained matrix.

<span class="mw-page-title-main">Extrusive rock</span> Mode of igneous volcanic rock formation

Extrusive rock refers to the mode of igneous volcanic rock formation in which hot magma from inside the Earth flows out (extrudes) onto the surface as lava or explodes violently into the atmosphere to fall back as pyroclastics or tuff. In contrast, intrusive rock refers to rocks formed by magma which cools below the surface.

<span class="mw-page-title-main">Magma chamber</span> Accumulation of molten rock within the Earths crust

A magma chamber is a large pool of liquid rock beneath the surface of the Earth. The molten rock, or magma, in such a chamber is less dense than the surrounding country rock, which produces buoyant forces on the magma that tend to drive it upwards. If the magma finds a path to the surface, then the result will be a volcanic eruption; consequently, many volcanoes are situated over magma chambers. These chambers are hard to detect deep within the Earth, and therefore most of those known are close to the surface, commonly between 1 km and 10 km down.

<span class="mw-page-title-main">Dike (geology)</span> A sheet of rock that is formed in a fracture of a pre-existing rock body

In geology, a dike or dyke is a sheet of rock that is formed in a fracture of a pre-existing rock body. Dikes can be either magmatic or sedimentary in origin. Magmatic dikes form when magma flows into a crack then solidifies as a sheet intrusion, either cutting across layers of rock or through a contiguous mass of rock. Clastic dikes are formed when sediment fills a pre-existing crack.

<span class="mw-page-title-main">Laccolith</span> Mass of igneous rock formed from magma

A laccolith is a body of intrusive rock with a dome-shaped upper surface and a level base, fed by a conduit from below. A laccolith forms when magma rising through the Earth's crust begins to spread out horizontally, prying apart the host rock strata. The pressure of the magma is high enough that the overlying strata are forced upward, giving the laccolith its dome-like form.

<span class="mw-page-title-main">Sill (geology)</span> Tabular intrusion between older layers of rock

In geology, a sill is a tabular sheet intrusion that has intruded between older layers of sedimentary rock, beds of volcanic lava or tuff, or along the direction of foliation in metamorphic rock. A sill is a concordant intrusive sheet, meaning that it does not cut across preexisting rock beds. Stacking of sills builds a sill complex and a large magma chamber at high magma flux. In contrast, a dike is a discordant intrusive sheet, which does cut across older rocks.

<span class="mw-page-title-main">Alba Mons</span> Martian volcano

Alba Mons is a volcano located in the northern Tharsis region of the planet Mars. It is the biggest volcano on Mars in terms of surface area, with volcanic flow fields that extend for at least 1,350 km (840 mi) from its summit. Although the volcano has a span comparable to that of the United States, it reaches an elevation of only 6.8 km (22,000 ft) at its highest point. This is about one-third the height of Olympus Mons, the tallest volcano on the planet. The flanks of Alba Mons have very gentle slopes. The average slope along the volcano's northern flank is 0.5°, which is over five times lower than the slopes on the other large Tharsis volcanoes. In broad profile, Alba Mons resembles a vast but barely raised welt on the planet's surface. It is a unique volcanic structure with no counterpart on Earth or elsewhere on Mars.

<span class="mw-page-title-main">Resurgent dome</span> Dome formed by swelling or rising of a caldera floor due to movement in the magma chamber beneath it

In geology, a resurgent dome is a dome formed by swelling or rising of a caldera floor due to movement in the magma chamber beneath it. Unlike a lava dome, a resurgent dome is not formed by the extrusion of highly viscous lava onto the surface, but rather by the uplift and deformation of the surface itself by magma movement underground. Resurgent domes are typically found near the center of very large open calderas such as Yellowstone Caldera or Valles Caldera, and in turn such calderas are often referred to as "resurgent-type" calderas to distinguish them from the more common calderas found on shield volcanoes and stratovolcanoes.

<span class="mw-page-title-main">Diatreme</span> Volcanic pipe associated with a gaseous explosion

A diatreme, sometimes known as a maar-diatreme volcano, is a volcanic pipe associated with a gaseous explosion. When magma rises up through a crack in Earth's crust and makes contact with a shallow body of groundwater, rapid expansion of heated water vapor and volcanic gases can cause a series of explosions. A relatively shallow crater is left, and a rock-filled fracture in the crust. Where diatremes breach the surface they produce a steep, inverted cone shape.

<span class="mw-page-title-main">Igneous intrusion</span> Body of intrusive igneous rocks

In geology, an igneous intrusion is a body of intrusive igneous rock that forms by crystallization of magma slowly cooling below the surface of the Earth. Intrusions have a wide variety of forms and compositions, illustrated by examples like the Palisades Sill of New York and New Jersey; the Henry Mountains of Utah; the Bushveld Igneous Complex of South Africa; Shiprock in New Mexico; the Ardnamurchan intrusion in Scotland; and the Sierra Nevada Batholith of California.

<span class="mw-page-title-main">Rift zone</span> Part of a volcano where a set of linear cracks form

A rift zone is a feature of some volcanoes, especially shield volcanoes, in which a set of linear cracks develops in a volcanic edifice, typically forming into two or three well-defined regions along the flanks of the vent. Believed to be primarily caused by internal and gravitational stresses generated by magma emplacement within and across various regions of the volcano, rift zones allow the intrusion of magmatic dykes into the slopes of the volcano itself. The addition of these magmatic materials usually contributes to the further rifting of the slope, in addition to generating fissure eruptions from those dykes that reach the surface. It is the grouping of these fissures, and the dykes that feed them, that serves to delineate where and whether a rift zone is to be defined. The accumulated lava of repeated eruptions from rift zones along with the endogenous growth created by magma intrusions causes these volcanoes to have an elongated shape. Perhaps the best example of this is Mauna Loa, which in Hawaiian means "long mountain", and which features two very well defined rift zones extending tens of kilometers outward from the central vent.

<span class="mw-page-title-main">Mount Tendürek</span> Shield volcano in eastern Turkey

Mount Tendürek is a shield volcano on the border of Ağrı and Van provinces in eastern Turkey, near the border with Iran. The volcano, which is mostly known for being near the supposed wreck site of Noah's Ark, is very large; its lava flows cover roughly 650 km2 (251 sq mi) across a swath of flat land. The mountain's two main features are the main summit crater Greater Tendürek, and a smaller crater known as Lesser Tendürek which lies to the east of the main crater. The slopes are very gentle and resemble a shield, after which the type is named. Mount Tendürek is known to have erupted viscous lava like that of volcanoes on the island of Hawaii.

The Bennett Lake Volcanic Complex (BLVC) is a huge 50-million-year-old extinct caldera complex that spans across the British Columbia-Yukon border in Canada. It is located near the western end of the West Arm of Bennett Lake. The caldera complex is surrounded by granitic rocks containing pendants.

<span class="mw-page-title-main">Silverthrone Caldera</span> Caldera in British Columbia, Canada

The Silverthrone Caldera is a potentially active caldera complex in southwestern British Columbia, Canada, located over 350 kilometres (220 mi) northwest of the city of Vancouver and about 50 kilometres (31 mi) west of Mount Waddington in the Pacific Ranges of the Coast Mountains. The caldera is one of the largest of the few calderas in western Canada, measuring about 30 kilometres (19 mi) long (north-south) and 20 kilometres (12 mi) wide (east-west). Mount Silverthrone, an eroded lava dome on the caldera's northern flank that is 2,864 metres (9,396 ft) high, may be the highest volcano in Canada.

Volcano tectonics is a scientific field that uses the techniques and methods of structural geology, tectonics, and physics to analyse and interpret physical processes and the associated deformation in volcanic areas, at any scale.

<span class="mw-page-title-main">Cone sheet</span>

A cone sheet is a type of high-level igneous intrusion of subvolcanic rock, found in partly eroded central volcanic complexes. Cone sheets are relatively thin inclined sheets, generally just a few metres thick, with the geometry of a downward-pointing cone. Viewed from above, their outcrop is typically circular to elliptical. They were originally described from the Ardnamurchan, Mull and other central complexes of the British Tertiary Volcanic Province.

<span class="mw-page-title-main">Geological deformation of Iceland</span>

The geological deformation of Iceland is the way that the rocks of the island of Iceland are changing due to tectonic forces. The geological deformation help to explain the location of earthquakes, volcanoes, fissures, and the shape of the island. Iceland is the largest landmass situated on an oceanic ridge. It is an elevated plateau of the sea floor, situated at the crossing of the Mid-Atlantic Ridge and the Greenland-Iceland-Scotland ridge. It lies along the oceanic divergent plate boundary of North American Plate and Eurasian Plate. The western part of Iceland sits on the North American Plate and the eastern part sits on the Eurasian Plate. The Reykjanes Ridge of the Mid-Atlantic ridge system in this region crosses the island from southwest and connects to the Kolbeinsey Ridge in the northeast.

<span class="mw-page-title-main">Kulshan caldera</span> Pleistocene caldera volcano

The Kulshan caldera is a Pleistocene volcano in the North Cascades of Washington and one of the few calderas identified in the entire Cascade Range. It is the product of the Mount Baker volcanic field, which has a history stretching back to possibly 3.722 million years ago.

The Christmas Mountains caldera complex is a caldera complex located in the Christmas Mountains in Big Bend National Park in western Texas. It is the oldest such complex preserved in Texas and is the type example of a laccocaldera.

References

  1. Billings, Marland P. "Section of Geology and Mineralogy: Ring-dikes and Their Origin." Transactions of the New York Academy of Sciences 5.6 Series II (1943): 131–44
  2. Johnson, Scott E., S. R. Paterson, and M. C. Tate. "Structure and emplacement history of a multiple-center, cone-sheet–bearing ring complex: The Zarza Intrusive Complex, Baja California, Mexico." Geological Society of America Bulletin 111.4 (1999): 607–19).
  3. 1 2 Gudmundsson, Agust. "Formation of collapse calderas." Geology 16.9 (1988): 808–10.
  4. Troll, V. R.; Walter, T. R.; Schmincke, H.-U. (2002-02-01). "Cyclic caldera collapse: Piston or piecemeal subsidence? Field and experimental evidence". Geology. 30 (2): 135–138. Bibcode:2002Geo....30..135T. doi:10.1130/0091-7613(2002)030<0135:CCCPOP>2.0.CO;2. ISSN   0091-7613.
  5. Blatt, Harvey, Robert Tracy, and Brent Owens. Petrology: igneous, sedimentary, and metamorphic. Macmillan, 2006. [ ISBN missing ][ page needed ]
  6. Walter, Thomas R.; Troll, Valentin R. (2001-06-01). "Formation of caldera periphery faults: an experimental study". Bulletin of Volcanology. 63 (2): 191. Bibcode:2001BVol...63..191W. doi:10.1007/s004450100135. ISSN   1432-0819. S2CID   59140680.
  7. Emeleus, C. Henry; Troll, Valentin R.; Chew, David M.; Meade, Fiona C. (March 2012). "Lateral versus vertical emplacement in shallow-level intrusions? The Slieve Gullion Ring-complex revisited". Journal of the Geological Society. 169 (2): 157–171. Bibcode:2012JGSoc.169..157E. doi:10.1144/0016-76492011-044. ISSN   0016-7649. S2CID   130108022.
  8. Gudmundsson, Agust, Joan Marti, and Elisenda Turon. "Stress fields generating ring faults in volcanoes." Geophysical Research Letters 24.13 (1997): 1559–62
  9. O'keefe, John A., Paul D. Lowman, and Winifred S. Cameron. "Lunar Ring Dikes from Orbiter I." Science 155.3758 (1967): 77–79.
  10. 1 2 Browning J. & Gudmundsson A. (2015). "Caldera faults capture and deflect inclined sheets : An alternative mechanism of ring-dike formation" (PDF). Bulletin of Volcanology. 77 (4): 4. Bibcode:2015BVol...77....4B. doi:10.1007/s00445-014-0889-4. S2CID   54022484.
  11. Modell, David. "Ring-Dike Complex of the Belknap Mountains. New Hampshire." Geological Society of American Bulletin 47.12 (1936): 1885–1932.
  12. Young, Davis A., Mind Over Magma: The Story of Igneous Petrology, Princeton University Press, 2003, pp. 341–42, ISBN   978-0691102795
  13. Lockwood, John P. and Richard W. Hazlett, Volcanoes:Global Perspectives, Wiley-Blackwell (2010).[ ISBN missing ][ page needed ]