Aseismic creep

Last updated
A house sitting on the Calaveras Fault in 2003. It was demolished in 2009. Effects of fault on 164 Locust Street, Hollister, California, February 2003.jpg
A house sitting on the Calaveras Fault in 2003. It was demolished in 2009.

In geology, aseismic creep or fault creep is measurable surface displacement along a fault in the absence of notable earthquakes. Aseismic creep may also occur as "after-slip" days to years after an earthquake. Notable examples of aseismic slip include faults in California (e.g. Calaveras Fault, Hayward Fault, and San Andreas Fault).

Contents

Causes

Simulation of aseismic creep in Parkfield, California. (The plaques were erected as they appear here in 1995 to represent the fault's movement since 1931.) Aseismic creep in Parkfield.jpg
Simulation of aseismic creep in Parkfield, California. (The plaques were erected as they appear here in 1995 to represent the fault's movement since 1931.)

Aseismic creep accommodates far-field motions on localized zones of deformation at tectonic plate boundaries. The underlying causes of aseismic creep are primarily attributed to poor frictional strength of the fault, low normal stress acting on the fault in the shallow crust, and excessive pore-fluid pressures, which limit the viable amount of normal stress on a fault. The frictional reaction of geologic materials can explain the transition from seismic to aseismic deformation with depth. [1] Friction along faults can cause sudden slips with associated stress drops (earthquakes), along with phases of no motion as stress recharges. [1]

Measurements

Creep of the Hayward Fault displaced this curb over 15 years (Fremont, California). HaywardFaultCreep.jpg
Creep of the Hayward Fault displaced this curb over 15 years (Fremont, California).

Knowing how creep rates vary temporally and spatially along faults has important implications for predicting the timing, locations, and potential sizes of future earthquakes as well as the mechanics of fault behavior. Measurements of inter-seismic strain, as well as the associated pattern of coupling, are also crucial because they reveal the pockets where stress is building up and may be released in future seismic ruptures. [2] The emergence of space-based geodesy and newly developed remote sensing techniques are used to monitor crustal deformation in order to track aseismic creep on a fault. [2] Theodolite surveys are used with alignment arrays to track the creep. These data may then be used to restrict a fault's seismic capacity.

Examples

Aseismic creep exists along the Calaveras Fault in Hollister, California. Streets crossing the fault in Hollister show significant offset. Several houses sitting atop the fault are notably twisted, yet still habitable. The city attracts geologists and geology students almost weekly.

Other examples of faults that have experienced aseismic creep include a San Andreas Fault in California and the North Anatolian Fault in Turkey. [3] Creep along the Maacama Fault is about 8 mm per year, consistent with the steady movement along the rest of the Hayward Fault system.

Offset in the California Memorial Stadium. Berkeley stadium fault creep P1320489.jpg
Offset in the California Memorial Stadium.

See also

Related Research Articles

<span class="mw-page-title-main">Earthquake</span> Sudden movement of the Earths crust

An earthquake – also called a quake, tremor, or temblor – is the shaking of the surface of Earth resulting from a sudden release of energy in the lithosphere that creates seismic waves. Earthquakes can range in intensity, from those that are so weak that they cannot be felt, to those violent enough to propel objects and people into the air, damage critical infrastructure, and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time. The seismicity at a particular location in the Earth is the average rate of seismic energy release per unit volume. The word tremor is also used for non-earthquake seismic rumbling.

<span class="mw-page-title-main">San Andreas Fault</span> Geologic feature in California

The San Andreas Fault is a continental right-lateral strike-slip transform fault that extends roughly 1,200 kilometers (750 mi) through the Californias. It forms the tectonic boundary between the Pacific Plate and the North American Plate. Traditionally, for scientific purposes, the fault has been classified into three main segments, each with different characteristics and a different degree of earthquake risk. The average slip rate along the entire fault ranges from 20 to 35 mm per year.

<span class="mw-page-title-main">Transform fault</span> Plate boundary where the motion is predominantly horizontal

A transform fault or transform boundary, is a fault along a plate boundary where the motion is predominantly horizontal. It ends abruptly where it connects to another plate boundary, either another transform, a spreading ridge, or a subduction zone. A transform fault is a special case of a strike-slip fault that also forms a plate boundary.

<span class="mw-page-title-main">Fault (geology)</span> Fracture or discontinuity in rock across which there has been displacement

In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as the megathrust faults of subduction zones or transform faults. Energy release associated with rapid movement on active faults is the cause of most earthquakes. Faults may also displace slowly, by aseismic creep.

<span class="mw-page-title-main">Hayward Fault Zone</span> Geological fault in the San Francisco Bay Area

The Hayward Fault Zone is a right-lateral strike-slip geologic fault zone capable of generating destructive earthquakes. The fault was first named in the Lawson Report of the 1906 San Francisco Earthquake in recognition of its involvement in the earthquake of 1868. This fault is about 119 km (74 mi) long, situated mainly along the western base of the hills on the east side of San Francisco Bay. It runs through densely populated areas, including Richmond, El Cerrito, Berkeley, Oakland, San Leandro, Castro Valley, Hayward, Union City, Fremont, and San Jose.

<span class="mw-page-title-main">Cascadia subduction zone</span> Convergent plate boundary that stretches from northern Vancouver Island to Northern California

The Cascadia subduction zone is a 960 km fault at a convergent plate boundary, about 112-160 km off the Pacific Shore, that stretches from northern Vancouver Island in Canada to Northern California in the United States. It is capable of producing 9.0+ magnitude earthquakes and tsunamis that could reach 30m. The Oregon Department of Emergency Management estimates shaking would last 5-7 minutes along the coast, with strength and intensity decreasing further from the epicenter. It is a very long, sloping subduction zone where the Explorer, Juan de Fuca, and Gorda plates move to the east and slide below the much larger mostly continental North American Plate. The zone varies in width and lies offshore beginning near Cape Mendocino, Northern California, passing through Oregon and Washington, and terminating at about Vancouver Island in British Columbia.

<span class="mw-page-title-main">Garlock Fault</span> Fault running along the margins of the Mojave Desert of Southern California, United States

The Garlock Fault is a left-lateral strike-slip fault running northeast–southwest along the north margins of the Mojave Desert of Southern California, for much of its length along the southern base of the Tehachapi Mountains.

Coulomb stress transfer is a seismic-related geological process of stress changes to surrounding material caused by local discrete deformation events. Using mapped displacements of the Earth's surface during earthquakes, the computed Coulomb stress changes suggest that the stress relieved during an earthquake not only dissipates but can also move up and down fault segments, concentrating and promoting subsequent tremors. Importantly, Coulomb stress changes have been applied to earthquake-forecasting models that have been used to assess potential hazards related to earthquake activity.

<span class="mw-page-title-main">Calaveras Fault</span> Geological fault in northern California

The Calaveras Fault is a major branch of the San Andreas Fault System that is located in northern California in the San Francisco Bay Area. Activity on the different segments of the fault includes moderate and large earthquakes as well as aseismic creep. The last large event was the magnitude 6.2 1984 Morgan Hill event. The most recent moderate earthquakes were the magnitude 5.1 event on 25 October 2022, and the magnitude 5.6 2007 Alum Rock event.

A slow earthquake is a discontinuous, earthquake-like event that releases energy over a period of hours to months, rather than the seconds to minutes characteristic of a typical earthquake. First detected using long term strain measurements, most slow earthquakes now appear to be accompanied by fluid flow and related tremor, which can be detected and approximately located using seismometer data filtered appropriately. That is, they are quiet compared to a regular earthquake, but not "silent" as described in the past.

Episodic tremor and slip (ETS) is a seismological phenomenon observed in some subduction zones that is characterized by non-earthquake seismic rumbling, or tremor, and slow slip along the plate interface. Slow slip events are distinguished from earthquakes by their propagation speed and focus. In slow slip events, there is an apparent reversal of crustal motion, although the fault motion remains consistent with the direction of subduction. ETS events themselves are imperceptible to human beings and do not cause damage.

<span class="mw-page-title-main">Dead Sea Transform</span> Fault system between the African and Arabian plates

The Dead Sea Transform (DST) fault system, also sometimes referred to as the Dead Sea Rift, is a series of faults that run for about 1,000 km from the Maras Triple Junction to the northern end of the Red Sea Rift. The fault system forms the transform boundary between the African Plate to the west and the Arabian Plate to the east. It is a zone of left lateral (sinistral) displacement, signifying the relative motions of the two plates. Both plates are moving in a general north-northeast direction, but the Arabian Plate is moving faster, resulting in the observed left lateral motions along the fault of approximately 107 km at its southern end. A component of extension is also present in the southern part of the transform, which has contributed to a series of depressions, or pull-apart basins, forming the Gulf of Aqaba, Dead Sea, Sea of Galilee, and Hula basins. A component of shortening affects the Lebanon restraining bend, leading to uplift on both sides of the Beqaa valley. There is local transtension in the northernmost part of the fault system, forming the Ghab pull-apart basin. The fault system runs roughly along the political border of Israel, Jordan, and Lebanon.

<span class="mw-page-title-main">UCERF2</span>

The 2008 Uniform California Earthquake Rupture Forecast, Version 2, or UCERF2, is one of a series of earthquake forecasts prepared for the state California by the Working Group on California Earthquake Probabilities (WGCEP), collaboration of the U.S. Geological Survey, the California Geological Survey, and the Southern California Earthquake Center, with funding from the California Earthquake Authority. UCERF2 was superseded by UCERF3 in 2015.

In seismology, an earthquake rupture is the extent of slip that occurs during an earthquake in the Earth's crust. Earthquakes occur for many reasons that include: landslides, movement of magma in a volcano, the formation of a new fault, or, most commonly of all, a slip on an existing fault.

<span class="mw-page-title-main">Xianshuihe fault system</span> Geological feature in Asia

The Xianshuihe fault system is a major active sinistral (left-lateral) strike-slip fault zone in southwestern China, at the eastern edge of the Tibetan Plateau. It has been responsible for many major earthquakes, and is one of the most seismically active fault zones in this part of China.

The 1979 Coyote Lake earthquake occurred at 10:05:24 local time on August 6 with a moment magnitude of 5.7 and a maximum Mercalli Intensity of VII. The shock occurred on the Calaveras Fault near Coyote Lake in Santa Clara County, California and resulted in a number of injuries, including some that required hospitalization. Most of the $500,000 in damage that was caused was non-structural, but several businesses were closed for repairs. Data from numerous strong motion instruments was used to determine the type, depth, and extent of slip. A non-destructive aftershock sequence that lasted throughout the remainder of the month was of interest to seismologists, especially with regard to fault creep, and following the event local governments evaluated their response to the incident.

<span class="mw-page-title-main">UCERF3</span> 2015 US Geological Survey earthquake forecast for California

The 2015 Uniform California Earthquake Rupture Forecast, Version 3, or UCERF3, is the latest official earthquake rupture forecast (ERF) for the state of California, superseding UCERF2. It provides authoritative estimates of the likelihood and severity of potentially damaging earthquake ruptures in the long- and near-term. Combining this with ground motion models produces estimates of the severity of ground shaking that can be expected during a given period, and of the threat to the built environment. This information is used to inform engineering design and building codes, planning for disaster, and evaluating whether earthquake insurance premiums are sufficient for the prospective losses. A variety of hazard metrics can be calculated with UCERF3; a typical metric is the likelihood of a magnitude M 6.7 earthquake in the 30 years since 2014.

Nadia Lapusta is a Professor of Mechanical Engineering and Geophysics at the California Institute of Technology. She designed the first computational model that could accurately and efficiently simulate sequence of earthquakes and interseismic slow deformation on a planar fault in a single consistent physical framework.

<span class="mw-page-title-main">Haiyuan Fault</span> Intracontinental strike-slip fault in Tibet

The Haiyuan Fault is a major active intracontinental strike-slip (sinistral) fault in Central Asia.

<span class="mw-page-title-main">Earthquake cycle</span>

The earthquake cycle refers to the phenomenon that earthquakes repeatedly occur on the same fault as the result of continual stress accumulation and periodic stress release. Earthquake cycles can occur on a variety of faults including subduction zones and continental faults. Depending on the size of the earthquake, an earthquake cycle can last decades, centuries, or longer. The Parkfield portion of the San Andreas fault is a well-known example where similarly located M6.0 earthquakes have been instrumentally recorded every 30–40 years.

References

  1. 1 2 Schwartz, Susan Y.; Rokosky, Juliana M. (2007). "Slow slip events and seismic tremor at circum-Pacific subduction zones". Reviews of Geophysics. 45 (3): n/a. Bibcode:2007RvGeo..45.3004S. doi: 10.1029/2006RG000208 . ISSN   1944-9208. S2CID   128205122.
  2. 1 2 Avouac, Jean-Philippe (2015). "From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle". Annual Review of Earth and Planetary Sciences. 43 (1): 233–271. Bibcode:2015AREPS..43..233A. doi: 10.1146/annurev-earth-060614-105302 . ISSN   0084-6597.
  3. Kaduri, Maor; Gratier, Jean-Pierre; Renard, François; Çakir, Zidayin; Lasserre, Cécile (10 May 2017). "The implications of fault zone transformation on aseismic creep: Example of the North Anatolian Fault, Turkey". Journal of Geophysical Research: Solid Earth. 122 (6): 4208–4236. Bibcode:2017JGRB..122.4208K. doi:10.1002/2016JB013803. hdl: 10852/62745 . S2CID   134786069 . Retrieved 4 November 2022.